📜  0-1 背包问题 | DP-10

📅  最后修改于: 2021-09-17 06:58:43             🧑  作者: Mango

给定n个物品的重量和价值,将这些物品放入容量为W的背包中,得到背包中的最大总值。换句话说,给定两个整数数组 val[0..n-1] 和 wt[0..n-1],它们分别表示与 n 个项目相关的值和权重。同样给定一个代表背包容量的整数 W,找出 val[] 的最大值子集,使得该子集的权重之和小于或等于 W。你不能破坏一个项目,要么选择完整的项目,要么不不选择它(0-1 属性)。

背包问题

方法 1通过 Brute-Force 算法或穷举搜索递归。
方法:一个简单的解决方案是考虑项目的所有子集,并计算所有子集的总权重和价值。考虑总权重小于 W 的唯一子集。从所有这些子集中选择最大值子集。
最优子结构要考虑项目的所有子集,每个项目可以有两种情况。

  1. 情况 1:该项目包含在最优子集中。
  2. 情况 2:该项目未包含在最优集合中。

因此,从“n”项中可以获得的最大值是以下两个值中的最大值。

  1. n-1 项和 W 权重(不包括第 n 项)得到的最大值。
  2. 第n个项目的值加上n-1个项目得到的最大值和W减去第n个项目(包括第n个项目)的权重。

如果’nth’ 项的权重大于’W’,则不能包括第n 项,情况1是唯一的可能性。

下面是上述方法的实现:

C++
/* A Naive recursive implementation of
 0-1 Knapsack problem */
#include 
using namespace std;
 
// A utility function that returns
// maximum of two integers
int max(int a, int b) { return (a > b) ? a : b; }
 
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
 
    // Base Case
    if (n == 0 || W == 0)
        return 0;
 
    // If weight of the nth item is more
    // than Knapsack capacity W, then
    // this item cannot be included
    // in the optimal solution
    if (wt[n - 1] > W)
        return knapSack(W, wt, val, n - 1);
 
    // Return the maximum of two cases:
    // (1) nth item included
    // (2) not included
    else
        return max(
            val[n - 1]
                + knapSack(W - wt[n - 1],
                           wt, val, n - 1),
            knapSack(W, wt, val, n - 1));
}
 
// Driver code
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    cout << knapSack(W, wt, val, n);
    return 0;
}
 
// This code is contributed by rathbhupendra


C
/* A Naive recursive implementation
of 0-1 Knapsack problem */
#include 
 
// A utility function that returns
// maximum of two integers
int max(int a, int b) { return (a > b) ? a : b; }
 
// Returns the maximum value that can be
// put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
    // Base Case
    if (n == 0 || W == 0)
        return 0;
 
    // If weight of the nth item is more than
    // Knapsack capacity W, then this item cannot
    // be included in the optimal solution
    if (wt[n - 1] > W)
        return knapSack(W, wt, val, n - 1);
 
    // Return the maximum of two cases:
    // (1) nth item included
    // (2) not included
    else
        return max(
            val[n - 1]
                + knapSack(W - wt[n - 1],
                           wt, val, n - 1),
            knapSack(W, wt, val, n - 1));
}
 
// Driver program to test above function
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    printf("%d", knapSack(W, wt, val, n));
    return 0;
}


Java
/* A Naive recursive implementation
of 0-1 Knapsack problem */
class Knapsack {
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b)
    {
      return (a > b) ? a : b;
    }
 
    // Returns the maximum value that
    // can be put in a knapsack of
    // capacity W
    static int knapSack(int W, int wt[], int val[], int n)
    {
        // Base Case
        if (n == 0 || W == 0)
            return 0;
 
        // If weight of the nth item is
        // more than Knapsack capacity W,
        // then this item cannot be included
        // in the optimal solution
        if (wt[n - 1] > W)
            return knapSack(W, wt, val, n - 1);
 
        // Return the maximum of two cases:
        // (1) nth item included
        // (2) not included
        else
            return max(val[n - 1]
                       + knapSack(W - wt[n - 1], wt,
                                  val, n - 1),
                       knapSack(W, wt, val, n - 1));
    }
 
    // Driver code
    public static void main(String args[])
    {
        int val[] = new int[] { 60, 100, 120 };
        int wt[] = new int[] { 10, 20, 30 };
        int W = 50;
        int n = val.length;
        System.out.println(knapSack(W, wt, val, n));
    }
}
/*This code is contributed by Rajat Mishra */


Python
# A naive recursive implementation
# of 0-1 Knapsack Problem
 
# Returns the maximum value that
# can be put in a knapsack of
# capacity W
 
 
def knapSack(W, wt, val, n):
 
    # Base Case
    if n == 0 or W == 0:
        return 0
 
    # If weight of the nth item is
    # more than Knapsack of capacity W,
    # then this item cannot be included
    # in the optimal solution
    if (wt[n-1] > W):
        return knapSack(W, wt, val, n-1)
 
    # return the maximum of two cases:
    # (1) nth item included
    # (2) not included
    else:
        return max(
            val[n-1] + knapSack(
                W-wt[n-1], wt, val, n-1),
            knapSack(W, wt, val, n-1))
 
# end of function knapSack
 
 
#Driver Code
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print knapSack(W, wt, val, n)
 
# This code is contributed by Nikhil Kumar Singh


C#
/* A Naive recursive implementation of
0-1 Knapsack problem */
using System;
 
class GFG {
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b)
    {
         return (a > b) ? a : b;
    }
 
    // Returns the maximum value that can
    // be put in a knapsack of capacity W
    static int knapSack(int W, int[] wt,
                        int[] val, int n)
    {
 
        // Base Case
        if (n == 0 || W == 0)
            return 0;
 
        // If weight of the nth item is
        // more than Knapsack capacity W,
        // then this item cannot be
        // included in the optimal solution
        if (wt[n - 1] > W)
            return knapSack(W, wt,
                            val, n - 1);
 
        // Return the maximum of two cases:
        // (1) nth item included
        // (2) not included
        else
            return max(val[n - 1]
                       + knapSack(W - wt[n - 1], wt,
                                  val, n - 1),
                       knapSack(W, wt, val, n - 1));
    }
 
    // Driver code
    public static void Main()
    {
        int[] val = new int[] { 60, 100, 120 };
        int[] wt = new int[] { 10, 20, 30 };
        int W = 50;
        int n = val.Length;
 
        Console.WriteLine(knapSack(W, wt, val, n));
    }
}
 
// This code is contributed by Sam007


PHP
 $W)
        return knapSack($W, $wt, $val, $n - 1);
     
    // Return the maximum of two cases:
    // (1) nth item included
    // (2) not included
    else
        return max($val[$n - 1] +
               knapSack($W - $wt[$n - 1],
               $wt, $val, $n - 1),
               knapSack($W, $wt, $val, $n-1));
}
 
    // Driver Code
    $val = array(60, 100, 120);
    $wt = array(10, 20, 30);
    $W = 50;
    $n = count($val);
    echo knapSack($W, $wt, $val, $n);
 
// This code is contributed by Sam007
?>


Javascript


C++
// A dynamic programming based
// solution for 0-1 Knapsack problem
#include 
using namespace std;
 
// A utility function that returns
// maximum of two integers
int max(int a, int b)
{
    return (a > b) ? a : b;
}
 
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
    int i, w;
      vector> K(n + 1, vector(W + 1));
 
    // Build table K[][] in bottom up manner
    for(i = 0; i <= n; i++)
    {
        for(w = 0; w <= W; w++)
        {
            if (i == 0 || w == 0)
                K[i][w] = 0;
            else if (wt[i - 1] <= w)
                K[i][w] = max(val[i - 1] +
                                K[i - 1][w - wt[i - 1]],
                                K[i - 1][w]);
            else
                K[i][w] = K[i - 1][w];
        }
    }
    return K[n][W];
}
 
// Driver Code
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
     
    cout << knapSack(W, wt, val, n);
     
    return 0;
}
 
// This code is contributed by Debojyoti Mandal


C
// A Dynamic Programming based
// solution for 0-1 Knapsack problem
#include 
 
// A utility function that returns
// maximum of two integers
int max(int a, int b)
{
    return (a > b) ? a : b;
}
 
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
    int i, w;
    int K[n + 1][W + 1];
 
    // Build table K[][] in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (w = 0; w <= W; w++)
        {
            if (i == 0 || w == 0)
                K[i][w] = 0;
            else if (wt[i - 1] <= w)
                K[i][w] = max(val[i - 1]
                          + K[i - 1][w - wt[i - 1]],
                          K[i - 1][w]);
            else
                K[i][w] = K[i - 1][w];
        }
    }
 
    return K[n][W];
}
 
// Driver Code
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    printf("%d", knapSack(W, wt, val, n));
    return 0;
}


Java
// A Dynamic Programming based solution
// for 0-1 Knapsack problem
class Knapsack {
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b)
    {
          return (a > b) ? a : b;
    }
 
    // Returns the maximum value that can
    // be put in a knapsack of capacity W
    static int knapSack(int W, int wt[],
                        int val[], int n)
    {
        int i, w;
        int K[][] = new int[n + 1][W + 1];
 
        // Build table K[][] in bottom up manner
        for (i = 0; i <= n; i++)
        {
            for (w = 0; w <= W; w++)
            {
                if (i == 0 || w == 0)
                    K[i][w] = 0;
                else if (wt[i - 1] <= w)
                    K[i][w]
                        = max(val[i - 1]
                         + K[i - 1][w - wt[i - 1]],
                         K[i - 1][w]);
                else
                    K[i][w] = K[i - 1][w];
            }
        }
 
        return K[n][W];
    }
 
    // Driver code
    public static void main(String args[])
    {
        int val[] = new int[] { 60, 100, 120 };
        int wt[] = new int[] { 10, 20, 30 };
        int W = 50;
        int n = val.length;
        System.out.println(knapSack(W, wt, val, n));
    }
}
/*This code is contributed by Rajat Mishra */


Python
# A Dynamic Programming based Python
# Program for 0-1 Knapsack problem
# Returns the maximum value that can
# be put in a knapsack of capacity W
 
 
def knapSack(W, wt, val, n):
    K = [[0 for x in range(W + 1)] for x in range(n + 1)]
 
    # Build table K[][] in bottom up manner
    for i in range(n + 1):
        for w in range(W + 1):
            if i == 0 or w == 0:
                K[i][w] = 0
            elif wt[i-1] <= w:
                K[i][w] = max(val[i-1]
                          + K[i-1][w-wt[i-1]], 
                              K[i-1][w])
            else:
                K[i][w] = K[i-1][w]
 
    return K[n][W]
 
 
# Driver code
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print(knapSack(W, wt, val, n))
 
# This code is contributed by Bhavya Jain


C#
// A Dynamic Programming based solution for
// 0-1 Knapsack problem
using System;
 
class GFG {
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b)
    {
         return (a > b) ? a : b;
    }
 
    // Returns the maximum value that
    // can be put in a knapsack of
    // capacity W
    static int knapSack(int W, int[] wt,
                        int[] val, int n)
    {
        int i, w;
        int[, ] K = new int[n + 1, W + 1];
 
        // Build table K[][] in bottom
        // up manner
        for (i = 0; i <= n; i++)
        {
            for (w = 0; w <= W; w++)
            {
                if (i == 0 || w == 0)
                    K[i, w] = 0;
                 
                else if (wt[i - 1] <= w)
                    K[i, w] = Math.Max(
                        val[i - 1]
                        + K[i - 1, w - wt[i - 1]],
                        K[i - 1, w]);
                else
                    K[i, w] = K[i - 1, w];
            }
        }
 
        return K[n, W];
    }
 
    // Driver code
    static void Main()
    {
        int[] val = new int[] { 60, 100, 120 };
        int[] wt = new int[] { 10, 20, 30 };
        int W = 50;
        int n = val.Length;
 
        Console.WriteLine(knapSack(W, wt, val, n));
    }
}
 
// This code is contributed by Sam007


PHP


Javascript


C++
// Here is the top-down approach of
// dynamic programming
#include 
using namespace std;
 
// Returns the value of maximum profit
int knapSackRec(int W, int wt[],
                int val[], int i,
                int** dp)
{
    // base condition
    if (i < 0)
        return 0;
    if (dp[i][W] != -1)
        return dp[i][W];
 
    if (wt[i] > W) {
 
        // Store the value of function call
        // stack in table before return
        dp[i][W] = knapSackRec(W, wt,
                               val, i - 1,
                               dp);
        return dp[i][W];
    }
    else {
        // Store value in a table before return
        dp[i][W] = max(val[i]
                      + knapSackRec(W - wt[i],
                                   wt, val,
                                   i - 1, dp),
                       knapSackRec(W, wt, val,
                                   i - 1, dp));
 
        // Return value of table after storing
        return dp[i][W];
    }
}
 
int knapSack(int W, int wt[], int val[], int n)
{
    // double pointer to declare the
    // table dynamically
    int** dp;
    dp = new int*[n];
 
    // loop to create the table dynamically
    for (int i = 0; i < n; i++)
        dp[i] = new int[W + 1];
 
    // loop to initially filled the
    // table with -1
    for (int i = 0; i < n; i++)
        for (int j = 0; j < W + 1; j++)
            dp[i][j] = -1;
    return knapSackRec(W, wt, val, n - 1, dp);
}
 
// Driver Code
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    cout << knapSack(W, wt, val, n);
    return 0;
}


Java
// Here is the top-down approach of 
// dynamic programming
class GFG{
     
// A utility function that returns 
// maximum of two integers    
static int max(int a, int b)    
{    
    return (a > b) ? a : b;    
}
 
// Returns the value of maximum profit  
static int knapSackRec(int W, int wt[],
                       int val[], int n,
                       int [][]dp)
{  
     
    // Base condition
    if (n == 0 || W == 0)  
        return 0;
         
    if (dp[n][W] != -1)
        return dp[n][W];  
     
    if (wt[n - 1] > W)  
     
        // Store the value of function call  
        // stack in table before return
        return dp[n][W] = knapSackRec(W, wt, val,
                                      n - 1, dp);
                                       
    else
     
        // Return value of table after storing 
        return dp[n][W] = max((val[n - 1] +
                              knapSackRec(W - wt[n - 1], wt,
                                          val, n - 1, dp)),
                              knapSackRec(W, wt, val,
                                          n - 1, dp));            
}
 
static int knapSack(int W, int wt[], int val[], int N)
{ 
     
    // Declare the table dynamically
    int dp[][] = new int[N + 1][W + 1];
     
    // Loop to initially filled the
    // table with -1
    for(int i = 0; i < N + 1; i++)  
        for(int j = 0; j < W + 1; j++)  
            dp[i][j] = -1;   
     
    return knapSackRec(W, wt, val, N, dp);    
}
 
// Driver Code
public static void main(String [] args)
{      
    int val[] = { 60, 100, 120 };  
    int wt[] = { 10, 20, 30 };  
     
    int W = 50; 
    int N = val.length;        
     
    System.out.println(knapSack(W, wt, val, N));  
}    
}
 
// This Code is contributed By FARAZ AHMAD


Python3
# This is the memoization approach of
# 0 / 1 Knapsack in Python in simple
# we can say recursion + memoization = DP
 
# driver code
val = [60, 100, 120 ]
wt = [10, 20, 30 ]
W = 50
n = len(val)
 
# We initialize the matrix with -1 at first.
t = [[-1 for i in range(W + 1)] for j in range(n + 1)]
 
 
def knapsack(wt, val, W, n):
 
    # base conditions
    if n == 0 or W == 0:
        return 0
    if t[n][W] != -1:
        return t[n][W]
 
    # choice diagram code
    if wt[n-1] <= W:
        t[n][W] = max(
            val[n-1] + knapsack(
                wt, val, W-wt[n-1], n-1),
            knapsack(wt, val, W, n-1))
        return t[n][W]
    elif wt[n-1] > W:
        t[n][W] = knapsack(wt, val, W, n-1)
        return t[n][W]
 
 
print(knapsack(wt, val, W, n))
 
# This code is contributed by Prosun Kumar Sarkar


C#
// Here is the top-down approach of 
// dynamic programming
using System;
public class GFG
{
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b) { return (a > b) ? a : b; }
 
    // Returns the value of maximum profit
    static int knapSackRec(int W, int[] wt, int[] val,
                           int n, int[, ] dp)
    {
 
        // Base condition
        if (n == 0 || W == 0)
            return 0;
        if (dp[n, W] != -1)
            return dp[n, W];
        if (wt[n - 1] > W)
 
            // Store the value of function call
            // stack in table before return
            return dp[n, W]
                = knapSackRec(W, wt, val, n - 1, dp);
 
        else
 
            // Return value of table after storing
            return dp[n, W]
                = max((val[n - 1]
                       + knapSackRec(W - wt[n - 1], wt, val,
                                     n - 1, dp)),
                      knapSackRec(W, wt, val, n - 1, dp));
    }
 
    static int knapSack(int W, int[] wt, int[] val, int N)
    {
 
        // Declare the table dynamically
        int[, ] dp = new int[N + 1, W + 1];
 
        // Loop to initially filled the
        // table with -1
        for (int i = 0; i < N + 1; i++)
            for (int j = 0; j < W + 1; j++)
                dp[i, j] = -1;
 
        return knapSackRec(W, wt, val, N, dp);
    }
 
    // Driver Code
    static public void Main()
    {
 
        int[] val = new int[]{ 60, 100, 120 };
        int[] wt = new int[]{ 10, 20, 30 };
 
        int W = 50;
        int N = val.Length;
 
        Console.WriteLine(knapSack(W, wt, val, N));
    }
}
 
// This Code is contributed By Dharanendra L V.


Javascript


Python3
# code
# A Dynamic Programming based Python
# Program for 0-1 Knapsack problem
# Returns the maximum value that can
# be put in a knapsack of capacity W
 
 
def knapSack(W, wt, val, n):
    dp = [0 for i in range(W+1)]  # Making the dp array
 
    for i in range(1, n+1):  # taking first i elements
        for w in range(W, 0, -1):  # starting from back,so that we also have data of
                                # previous computation when taking i-1 items
            if wt[i-1] <= w:
                # finding the maximum value
                dp[w] = max(dp[w], dp[w-wt[i-1]]+val[i-1])
 
    return dp[W]  # returning the maximum value of knapsack
 
 
# Driver code
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
# This code is contributed by Suyash Saxena
print(knapSack(W, wt, val, n))


C++
#include 
using namespace std;
int knapSack(int W, int wt[], int val[], int n)
{
    // making and initializing dp array
    int dp[W + 1];
    memset(dp, 0, sizeof(dp));
 
    for (int i = 1; i < n + 1; i++) {
        for (int w = W; w >= 0; w--) {
 
            if (wt[i - 1] <= w)
                // finding the maximum value
                dp[w] = max(dp[w],
                            dp[w - wt[i - 1]] + val[i - 1]);
        }
    }
    return dp[W]; // returning the maximum value of knapsack
}
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    cout << knapSack(W, wt, val, n);
    return 0;
}


输出
220

需要注意的是,上述函数一次又一次地计算相同的子问题。请参阅以下递归树,K(1, 1) 被评估两次。这个朴素的递归解决方案的时间复杂度是指数级的 (2^n)。

In the following recursion tree, K() refers 
to knapSack(). The two parameters indicated in the
following recursion tree are n and W.
The recursion tree is for following sample inputs.
wt[] = {1, 1, 1}, W = 2, val[] = {10, 20, 30}
                       K(n, W)
                       K(3, 2)  
                   /            \ 
                 /                \               
            K(2, 2)                  K(2, 1)
          /       \                  /    \ 
        /           \              /        \
       K(1, 2)      K(1, 1)        K(1, 1)     K(1, 0)
       /  \         /   \              /        \
     /      \     /       \          /            \
K(0, 2)  K(0, 1)  K(0, 1)  K(0, 0)  K(0, 1)   K(0, 0)
Recursion tree for Knapsack capacity 2 
units and 3 items of 1 unit weight.

复杂度分析:

  • 时间复杂度: O(2 n )。
    因为有多余的子问题。
  • 辅助空间: O(1)。
    因为没有使用额外的数据结构来存储值。

由于再次评估子问题,因此该问题具有重叠子问题的属性。所以 0-1 背包问题具有动态规划问题的两个性质(见这个和这个)。

方法2与其他典型的动态规划(DP)问题一样,通过自底向上构造临时数组K[][]可以避免相同子问题的重新计算。以下是基于动态规划的实现。

方法:在动态编程中,我们将考虑与递归方法中提到的相同的情况。在 DP[][] 表中,让我们考虑从“1”到“W”的所有可能权重作为列,权重可以保留为行。
状态 DP[i][j] 将表示考虑从“1”到“i”的所有值的“j-weight”的最大值。因此,如果我们考虑 ‘wi’(’ith’ 行中的权重),我们可以将其填充到所有具有 ‘weight values > wi’ 的列中。现在有两种可能:

  • 在给定的列中填写“wi”。
  • 不要在给定的列中填写“wi”。

现在我们必须取这两种可能性中的最大值,如果我们不在 ‘jth’ 列中填充 ‘ith’ 权重,那么 DP[i][j] 状态将与 DP[i-1][j] 相同,但是如果我们填充权重,DP[i][j] 将等于 ‘wi’ 的值 + 前一行中权重为 ‘j-wi’ 的列的值。所以我们取这两种可能性中的最大值来填充当前状态。此可视化将使概念清晰:

Let weight elements = {1, 2, 3}
Let weight values = {10, 15, 40}
Capacity=6

0   1   2   3   4   5   6

0  0   0   0   0   0   0   0

1  0  10  10  10  10  10  10

2  0  10  15  25  25  25  25

3  0
 
Explanation:
For filling 'weight = 2' we come 
across 'j = 3' in which 
we take maximum of 
(10, 15 + DP[1][3-2]) = 25   
  |        |
'2'       '2 filled'
not filled  

0   1   2   3   4   5   6

0  0   0   0   0   0   0   0

1  0  10  10  10  10  10  10

2  0  10  15  25  25  25  25

3  0  10  15  40  50  55  65

Explanation:
For filling 'weight=3', 
we come across 'j=4' in which 
we take maximum of (25, 40 + DP[2][4-3]) 
= 50

For filling 'weight=3' 
we come across 'j=5' in which 
we take maximum of (25, 40 + DP[2][5-3])
= 55

For filling 'weight=3' 
we come across 'j=6' in which 
we take maximum of (25, 40 + DP[2][6-3])
= 65

C++

// A dynamic programming based
// solution for 0-1 Knapsack problem
#include 
using namespace std;
 
// A utility function that returns
// maximum of two integers
int max(int a, int b)
{
    return (a > b) ? a : b;
}
 
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
    int i, w;
      vector> K(n + 1, vector(W + 1));
 
    // Build table K[][] in bottom up manner
    for(i = 0; i <= n; i++)
    {
        for(w = 0; w <= W; w++)
        {
            if (i == 0 || w == 0)
                K[i][w] = 0;
            else if (wt[i - 1] <= w)
                K[i][w] = max(val[i - 1] +
                                K[i - 1][w - wt[i - 1]],
                                K[i - 1][w]);
            else
                K[i][w] = K[i - 1][w];
        }
    }
    return K[n][W];
}
 
// Driver Code
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
     
    cout << knapSack(W, wt, val, n);
     
    return 0;
}
 
// This code is contributed by Debojyoti Mandal

C

// A Dynamic Programming based
// solution for 0-1 Knapsack problem
#include 
 
// A utility function that returns
// maximum of two integers
int max(int a, int b)
{
    return (a > b) ? a : b;
}
 
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
    int i, w;
    int K[n + 1][W + 1];
 
    // Build table K[][] in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (w = 0; w <= W; w++)
        {
            if (i == 0 || w == 0)
                K[i][w] = 0;
            else if (wt[i - 1] <= w)
                K[i][w] = max(val[i - 1]
                          + K[i - 1][w - wt[i - 1]],
                          K[i - 1][w]);
            else
                K[i][w] = K[i - 1][w];
        }
    }
 
    return K[n][W];
}
 
// Driver Code
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    printf("%d", knapSack(W, wt, val, n));
    return 0;
}

Java

// A Dynamic Programming based solution
// for 0-1 Knapsack problem
class Knapsack {
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b)
    {
          return (a > b) ? a : b;
    }
 
    // Returns the maximum value that can
    // be put in a knapsack of capacity W
    static int knapSack(int W, int wt[],
                        int val[], int n)
    {
        int i, w;
        int K[][] = new int[n + 1][W + 1];
 
        // Build table K[][] in bottom up manner
        for (i = 0; i <= n; i++)
        {
            for (w = 0; w <= W; w++)
            {
                if (i == 0 || w == 0)
                    K[i][w] = 0;
                else if (wt[i - 1] <= w)
                    K[i][w]
                        = max(val[i - 1]
                         + K[i - 1][w - wt[i - 1]],
                         K[i - 1][w]);
                else
                    K[i][w] = K[i - 1][w];
            }
        }
 
        return K[n][W];
    }
 
    // Driver code
    public static void main(String args[])
    {
        int val[] = new int[] { 60, 100, 120 };
        int wt[] = new int[] { 10, 20, 30 };
        int W = 50;
        int n = val.length;
        System.out.println(knapSack(W, wt, val, n));
    }
}
/*This code is contributed by Rajat Mishra */

Python

# A Dynamic Programming based Python
# Program for 0-1 Knapsack problem
# Returns the maximum value that can
# be put in a knapsack of capacity W
 
 
def knapSack(W, wt, val, n):
    K = [[0 for x in range(W + 1)] for x in range(n + 1)]
 
    # Build table K[][] in bottom up manner
    for i in range(n + 1):
        for w in range(W + 1):
            if i == 0 or w == 0:
                K[i][w] = 0
            elif wt[i-1] <= w:
                K[i][w] = max(val[i-1]
                          + K[i-1][w-wt[i-1]], 
                              K[i-1][w])
            else:
                K[i][w] = K[i-1][w]
 
    return K[n][W]
 
 
# Driver code
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print(knapSack(W, wt, val, n))
 
# This code is contributed by Bhavya Jain

C#

// A Dynamic Programming based solution for
// 0-1 Knapsack problem
using System;
 
class GFG {
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b)
    {
         return (a > b) ? a : b;
    }
 
    // Returns the maximum value that
    // can be put in a knapsack of
    // capacity W
    static int knapSack(int W, int[] wt,
                        int[] val, int n)
    {
        int i, w;
        int[, ] K = new int[n + 1, W + 1];
 
        // Build table K[][] in bottom
        // up manner
        for (i = 0; i <= n; i++)
        {
            for (w = 0; w <= W; w++)
            {
                if (i == 0 || w == 0)
                    K[i, w] = 0;
                 
                else if (wt[i - 1] <= w)
                    K[i, w] = Math.Max(
                        val[i - 1]
                        + K[i - 1, w - wt[i - 1]],
                        K[i - 1, w]);
                else
                    K[i, w] = K[i - 1, w];
            }
        }
 
        return K[n, W];
    }
 
    // Driver code
    static void Main()
    {
        int[] val = new int[] { 60, 100, 120 };
        int[] wt = new int[] { 10, 20, 30 };
        int W = 50;
        int n = val.Length;
 
        Console.WriteLine(knapSack(W, wt, val, n));
    }
}
 
// This code is contributed by Sam007

PHP


Javascript


输出
220

复杂度分析:

  • 时间复杂度: O(N*W)。
    其中“N”是权重元素的数量,“W”是容量。对于每个权重元素,我们遍历所有权重容量 1<=w<=W。
  • 辅助空间: O(N*W)。
    使用大小为“N*W”的二维数组。

方法 3此方法使用 Memoization Technique(递归方法的扩展)。
这种方法基本上是递归方法的扩展,因此我们可以克服计算冗余案例从而增加复杂性的问题。我们可以通过简单地创建一个二维数组来解决这个问题,如果我们第一次得到它,它可以存储一个特定的状态 (n, w)。现在,如果我们再次遇到相同的状态 (n, w) 而不是以指数复杂度计算它,我们可以在恒定时间内直接返回其存储在表中的结果。这种方法在这方面优于递归方法。

C++

// Here is the top-down approach of
// dynamic programming
#include 
using namespace std;
 
// Returns the value of maximum profit
int knapSackRec(int W, int wt[],
                int val[], int i,
                int** dp)
{
    // base condition
    if (i < 0)
        return 0;
    if (dp[i][W] != -1)
        return dp[i][W];
 
    if (wt[i] > W) {
 
        // Store the value of function call
        // stack in table before return
        dp[i][W] = knapSackRec(W, wt,
                               val, i - 1,
                               dp);
        return dp[i][W];
    }
    else {
        // Store value in a table before return
        dp[i][W] = max(val[i]
                      + knapSackRec(W - wt[i],
                                   wt, val,
                                   i - 1, dp),
                       knapSackRec(W, wt, val,
                                   i - 1, dp));
 
        // Return value of table after storing
        return dp[i][W];
    }
}
 
int knapSack(int W, int wt[], int val[], int n)
{
    // double pointer to declare the
    // table dynamically
    int** dp;
    dp = new int*[n];
 
    // loop to create the table dynamically
    for (int i = 0; i < n; i++)
        dp[i] = new int[W + 1];
 
    // loop to initially filled the
    // table with -1
    for (int i = 0; i < n; i++)
        for (int j = 0; j < W + 1; j++)
            dp[i][j] = -1;
    return knapSackRec(W, wt, val, n - 1, dp);
}
 
// Driver Code
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    cout << knapSack(W, wt, val, n);
    return 0;
}

Java

// Here is the top-down approach of 
// dynamic programming
class GFG{
     
// A utility function that returns 
// maximum of two integers    
static int max(int a, int b)    
{    
    return (a > b) ? a : b;    
}
 
// Returns the value of maximum profit  
static int knapSackRec(int W, int wt[],
                       int val[], int n,
                       int [][]dp)
{  
     
    // Base condition
    if (n == 0 || W == 0)  
        return 0;
         
    if (dp[n][W] != -1)
        return dp[n][W];  
     
    if (wt[n - 1] > W)  
     
        // Store the value of function call  
        // stack in table before return
        return dp[n][W] = knapSackRec(W, wt, val,
                                      n - 1, dp);
                                       
    else
     
        // Return value of table after storing 
        return dp[n][W] = max((val[n - 1] +
                              knapSackRec(W - wt[n - 1], wt,
                                          val, n - 1, dp)),
                              knapSackRec(W, wt, val,
                                          n - 1, dp));            
}
 
static int knapSack(int W, int wt[], int val[], int N)
{ 
     
    // Declare the table dynamically
    int dp[][] = new int[N + 1][W + 1];
     
    // Loop to initially filled the
    // table with -1
    for(int i = 0; i < N + 1; i++)  
        for(int j = 0; j < W + 1; j++)  
            dp[i][j] = -1;   
     
    return knapSackRec(W, wt, val, N, dp);    
}
 
// Driver Code
public static void main(String [] args)
{      
    int val[] = { 60, 100, 120 };  
    int wt[] = { 10, 20, 30 };  
     
    int W = 50; 
    int N = val.length;        
     
    System.out.println(knapSack(W, wt, val, N));  
}    
}
 
// This Code is contributed By FARAZ AHMAD

蟒蛇3

# This is the memoization approach of
# 0 / 1 Knapsack in Python in simple
# we can say recursion + memoization = DP
 
# driver code
val = [60, 100, 120 ]
wt = [10, 20, 30 ]
W = 50
n = len(val)
 
# We initialize the matrix with -1 at first.
t = [[-1 for i in range(W + 1)] for j in range(n + 1)]
 
 
def knapsack(wt, val, W, n):
 
    # base conditions
    if n == 0 or W == 0:
        return 0
    if t[n][W] != -1:
        return t[n][W]
 
    # choice diagram code
    if wt[n-1] <= W:
        t[n][W] = max(
            val[n-1] + knapsack(
                wt, val, W-wt[n-1], n-1),
            knapsack(wt, val, W, n-1))
        return t[n][W]
    elif wt[n-1] > W:
        t[n][W] = knapsack(wt, val, W, n-1)
        return t[n][W]
 
 
print(knapsack(wt, val, W, n))
 
# This code is contributed by Prosun Kumar Sarkar

C#

// Here is the top-down approach of 
// dynamic programming
using System;
public class GFG
{
 
    // A utility function that returns
    // maximum of two integers
    static int max(int a, int b) { return (a > b) ? a : b; }
 
    // Returns the value of maximum profit
    static int knapSackRec(int W, int[] wt, int[] val,
                           int n, int[, ] dp)
    {
 
        // Base condition
        if (n == 0 || W == 0)
            return 0;
        if (dp[n, W] != -1)
            return dp[n, W];
        if (wt[n - 1] > W)
 
            // Store the value of function call
            // stack in table before return
            return dp[n, W]
                = knapSackRec(W, wt, val, n - 1, dp);
 
        else
 
            // Return value of table after storing
            return dp[n, W]
                = max((val[n - 1]
                       + knapSackRec(W - wt[n - 1], wt, val,
                                     n - 1, dp)),
                      knapSackRec(W, wt, val, n - 1, dp));
    }
 
    static int knapSack(int W, int[] wt, int[] val, int N)
    {
 
        // Declare the table dynamically
        int[, ] dp = new int[N + 1, W + 1];
 
        // Loop to initially filled the
        // table with -1
        for (int i = 0; i < N + 1; i++)
            for (int j = 0; j < W + 1; j++)
                dp[i, j] = -1;
 
        return knapSackRec(W, wt, val, N, dp);
    }
 
    // Driver Code
    static public void Main()
    {
 
        int[] val = new int[]{ 60, 100, 120 };
        int[] wt = new int[]{ 10, 20, 30 };
 
        int W = 50;
        int N = val.Length;
 
        Console.WriteLine(knapSack(W, wt, val, N));
    }
}
 
// This Code is contributed By Dharanendra L V.

Javascript


输出
220

复杂度分析:

  • 时间复杂度: O(N*W)。
    因为避免了状态的冗余计算。
  • 辅助空间: O(N*W)。
    使用二维数组数据结构存储中间状态-:

[注意:对于 32 位整数,请使用 long 而不是 int。]
参考:

  • http://www.es.ele.tue.nl/education/5MC10/Solutions/knapsack.pdf
  • http://www.cse.unl.edu/~goddard/Courses/CSCE310J/Lectures/Lecture8-DynamicProgramming.pdf

方法 4:-我们使用动态规划方法,但具有优化的空间复杂度。

蟒蛇3

# code
# A Dynamic Programming based Python
# Program for 0-1 Knapsack problem
# Returns the maximum value that can
# be put in a knapsack of capacity W
 
 
def knapSack(W, wt, val, n):
    dp = [0 for i in range(W+1)]  # Making the dp array
 
    for i in range(1, n+1):  # taking first i elements
        for w in range(W, 0, -1):  # starting from back,so that we also have data of
                                # previous computation when taking i-1 items
            if wt[i-1] <= w:
                # finding the maximum value
                dp[w] = max(dp[w], dp[w-wt[i-1]]+val[i-1])
 
    return dp[W]  # returning the maximum value of knapsack
 
 
# Driver code
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
# This code is contributed by Suyash Saxena
print(knapSack(W, wt, val, n))

C++

#include 
using namespace std;
int knapSack(int W, int wt[], int val[], int n)
{
    // making and initializing dp array
    int dp[W + 1];
    memset(dp, 0, sizeof(dp));
 
    for (int i = 1; i < n + 1; i++) {
        for (int w = W; w >= 0; w--) {
 
            if (wt[i - 1] <= w)
                // finding the maximum value
                dp[w] = max(dp[w],
                            dp[w - wt[i - 1]] + val[i - 1]);
        }
    }
    return dp[W]; // returning the maximum value of knapsack
}
int main()
{
    int val[] = { 60, 100, 120 };
    int wt[] = { 10, 20, 30 };
    int W = 50;
    int n = sizeof(val) / sizeof(val[0]);
    cout << knapSack(W, wt, val, n);
    return 0;
}
输出
220

复杂性分析

时间复杂度:O(N*W)。因为避免了状态的冗余计算。

辅助空间:O(W) 因为我们使用的是一维数组而不是二维数组。

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程