0-1背包问题的Python程序
# A naive recursive implementation of 0-1 Knapsack Problem
# Returns the maximum value that can be put in a knapsack of
# capacity W
def knapSack(W, wt, val, n):
# Base Case
if n == 0 or W == 0 :
return 0
# If weight of the nth item is more than Knapsack of capacity
# W, then this item cannot be included in the optimal solution
if (wt[n-1] > W):
return knapSack(W, wt, val, n-1)
# return the maximum of two cases:
# (1) nth item included
# (2) not included
else:
return max(val[n-1] + knapSack(W-wt[n-1], wt, val, n-1),
knapSack(W, wt, val, n-1))
# end of function knapSack
# To test above function
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print knapSack(W, wt, val, n)
# This code is contributed by Nikhil Kumar Singh
输出:
220
# A Dynamic Programming based Python
# Program for 0-1 Knapsack problem
# Returns the maximum value that can
# be put in a knapsack of capacity W
def knapSack(W, wt, val, n):
K = [[0 for x in range(W + 1)] for x in range(n + 1)]
# Build table K[][] in bottom up manner
for i in range(n + 1):
for w in range(W + 1):
if i == 0 or w == 0:
K[i][w] = 0
elif wt[i-1] <= w:
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])
else:
K[i][w] = K[i-1][w]
return K[n][W]
# Driver program to test above function
val = [60, 100, 120]
wt = [10, 20, 30]
W = 50
n = len(val)
print(knapSack(W, wt, val, n))
# This code is contributed by Bhavya Jain
输出:
220
请参阅有关动态规划的完整文章 |第 10 套(0-1 背包问题)了解更多详情!