📌  相关文章
📜  来自两个给定数组的最长公共素数子序列的长度

📅  最后修改于: 2021-09-22 10:12:51             🧑  作者: Mango

给定两个长度分别为NM 的数组arr1[]arr2[] ,任务是找到最长公共素数子序列的长度 可以从两个给定的数组中获得。

例子:

朴素的方法:最简单的想法是考虑arr1[] 的所有子序列,并检查该子序列中的所有数字是否都是素数并出现在arr2[] 中。然后找到这些子序列的最长长度。

时间复杂度: O(M * 2 N )
辅助空间: O(N)

有效的方法:这个想法是从两个数组中找到所有的素数,然后使用动态规划从它们中找到最长的公共素数子序列。请按照以下步骤解决问题:

  1. 使用 Sieve Of Eratosthenes 算法找到数组的最小元素和数组的最大元素之间的所有素数。
  2. 存储数组arr1[]arr2[] 中的素数序列。
  3. 找出两个素数序列的 LCS。

下面是上述方法的实现:

C++
// CPP implementation of the above approach
#include 
using namespace std;
 
// Function to calculate the LCS
int recursion(vector arr1,
              vector arr2, int i,
              int j, map,
              int> dp)
{
    if (i >= arr1.size() or j >= arr2.size())
        return 0;
    pair key = { i, j };
    if (arr1[i] == arr2[j])
        return 1
               + recursion(arr1, arr2,
                            i + 1, j + 1,
                           dp);
    if (dp.find(key) != dp.end())
        return dp[key];
 
    else
        dp[key] = max(recursion(arr1, arr2,
                                i + 1, j, dp),
                      recursion(arr1, arr2, i,
                                j + 1, dp));
    return dp[key];
}
 
// Function to generate
// all the possible
// prime numbers
vector primegenerator(int n)
{
    int cnt = 0;
    vector primes(n + 1, true);
    int p = 2;
    while (p * p <= n)
    {
        for (int i = p * p; i <= n; i += p)
            primes[i] = false;
        p += 1;
    }
    return primes;
}
 
// Function which returns the
// length of longest common
// prime subsequence
int longestCommonSubseq(vector arr1,
                        vector arr2)
{
 
    // Minimum element of
    // both arrays
    int min1 = *min_element(arr1.begin(),
                            arr1.end());
    int min2 = *min_element(arr2.begin(),
                            arr2.end());
 
    // Maximum element of
    // both arrays
    int max1 = *max_element(arr1.begin(),
                            arr1.end());
    int max2 = *max_element(arr2.begin(),
                            arr2.end());
 
    // Generating all primes within
    // the max range of arr1
    vector a = primegenerator(max1);
 
    // Generating all primes within
    // the max range of arr2
    vector b = primegenerator(max2);
 
    vector finala;
    vector finalb;
 
    // Store precomputed values
    map, int> dp;
 
    // Store all primes in arr1[]
    for (int i = min1; i <= max1; i++)
    {
        if (find(arr1.begin(), arr1.end(), i)
            != arr1.end()
            and a[i] == true)
            finala.push_back(i);
    }
 
    // Store all primes of arr2[]
    for (int i = min2; i <= max2; i++)
    {
        if (find(arr2.begin(), arr2.end(), i)
            != arr2.end()
            and b[i] == true)
            finalb.push_back(i);
    }
 
    // Calculating the LCS
    return recursion(finala, finalb, 0, 0, dp);
}
 
// Driver Code
int main()
{
    vector arr1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    vector arr2 = { 2, 5, 6, 3, 7, 9, 8 };
     
    // Function Call
    cout << longestCommonSubseq(arr1, arr2);
}


Java
// JAVA implementation of the above approach
import java.util.*;
import java.io.*;
import java.math.*;
public class GFG
{
 
  // Function to calculate the LCS
  static int recursion(ArrayList arr1,
                       ArrayList arr2, int i,
                       int j, Map,
                       Integer> dp)
  {
    if (i >= arr1.size() || j >= arr2.size())
      return 0;
    ArrayList key = new ArrayList<>();
    key.add(i);
    key.add(j);
    if (arr1.get(i) == arr2.get(j))
      return 1 + recursion(arr1, arr2,
                           i + 1, j + 1,
                           dp);
    if (dp.get(key) != dp.get(dp.size()-1))
      return dp.get(key);
 
    else
      dp.put(key,Math.max(recursion(arr1, arr2,
                                    i + 1, j, dp),
                          recursion(arr1, arr2, i,
                                    j + 1, dp)));
    return dp.get(key);
  }
 
  // Function to generate
  // all the possible
  // prime numbers
  static ArrayList primegenerator(int n)
  {
    int cnt = 0;
    ArrayList primes = new ArrayList<>();
    for(int i = 0; i < n + 1; i++)
      primes.add(true);
    int p = 2;
    while (p * p <= n)
    {
      for (int i = p * p; i <= n; i += p)
        primes.set(i,false);
      p += 1;
    }
    return primes;
  }
 
  // Function that returns the Minimum element of an ArrayList
  static int min_element(ArrayList al)
  {
    int min = Integer.MAX_VALUE;
    for(int i = 0; i < al.size(); i++)
    {
      min=Math.min(min, al.get(i));
    }
    return min;
  }
 
  // Function that returns the Minimum element of an ArrayList
  static int max_element(ArrayList al)
  {
    int max = Integer.MIN_VALUE;
    for(int i = 0; i < al.size(); i++)
    {
      max = Math.max(max, al.get(i));
    }
    return max;
  }
 
  // Function which returns the
  // length of longest common
  // prime subsequence
  static int longestCommonSubseq(ArrayList arr1,
                                 ArrayList arr2)
  {
 
    // Minimum element of
    // both arrays
    int min1 = min_element(arr1);
    int min2 = min_element(arr2);
 
    // Maximum element of
    // both arrays
    int max1 = max_element(arr1);
    int max2 = max_element(arr2);
 
    // Generating all primes within
    // the max range of arr1
    ArrayList a = primegenerator(max1);
 
    // Generating all primes within
    // the max range of arr2
    ArrayList b = primegenerator(max2);
    ArrayList finala = new ArrayList<>();
    ArrayList finalb = new ArrayList<>();
 
    // Store precomputed values
    Map,Integer> dp =
      new HashMap ,Integer> ();
 
    // Store all primes in arr1[]
    for (int i = min1; i <= max1; i++)
    {
      if (arr1.contains(i)
          && a.get(i) == true)
        finala.add(i);
    }
 
    // Store all primes of arr2[]
    for (int i = min2; i <= max2; i++)
    {
      if (arr2.contains(i)
          && b.get(i) == true)
        finalb.add(i);
    }
 
    // Calculating the LCS
    return recursion(finala, finalb, 0, 0, dp);
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int a1[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    int a2[] = { 2, 5, 6, 3, 7, 9, 8 };
 
    // Converting into list
    ArrayList arr1 = new ArrayList();
    for(int i = 0; i < a1.length; i++)
      arr1.add(a1[i]);
 
    ArrayList arr2 = new ArrayList();
    for(int i = 0; i < a2.length; i++)
      arr2.add(a2[i]);
 
    // Function Call
    System.out.println(longestCommonSubseq(arr1, arr2));
  }
}
 
// This code is contributed by jyoti369


Python3
# Python implementation of the above approach
 
# Function to calculate the LCS
 
def recursion(arr1, arr2, i, j, dp):
    if i >= len(arr1) or j >= len(arr2):
        return 0
    key = (i, j)
    if arr1[i] == arr2[j]:
        return 1 + recursion(arr1, arr2,
                             i + 1, j + 1, dp)
    if key in dp:
        return dp[key]
    else:
        dp[key] = max(recursion(arr1, arr2,
                                i + 1, j, dp),
                      recursion(arr1, arr2,
                                i, j + 1, dp))
    return dp[key]
 
# Function to generate
# all the possible
# prime numbers
 
 
def primegenerator(n):
    cnt = 0
    primes = [True for _ in range(n + 1)]
    p = 2
    while p * p <= n:
        for i in range(p * p, n + 1, p):
            primes[i] = False
        p += 1
    return primes
 
# Function which returns the
# length of longest common
# prime subsequence
 
 
def longestCommonSubseq(arr1, arr2):
 
    # Minimum element of
    # both arrays
    min1 = min(arr1)
    min2 = min(arr2)
 
    # Maximum element of
    # both arrays
    max1 = max(arr1)
    max2 = max(arr2)
 
    # Generating all primes within
    # the max range of arr1
    a = primegenerator(max1)
 
    # Generating all primes within
    # the max range of arr2
    b = primegenerator(max2)
 
    finala = []
    finalb = []
 
    # Store precomputed values
    dp = dict()
 
    # Store all primes in arr1[]
    for i in range(min1, max1 + 1):
        if i in arr1 and a[i] == True:
            finala.append(i)
 
    # Store all primes of arr2[]
    for i in range(min2, max2 + 1):
        if i in arr2 and b[i] == True:
            finalb.append(i)
 
    # Calculating the LCS
    return recursion(finala, finalb,
                     0, 0, dp)
 
 
# Driver Code
arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr2 = [2, 5, 6, 3, 7, 9, 8]
 
# Function Call
print(longestCommonSubseq(arr1, arr2))


输出
4

时间复杂度: O(N * M)
辅助空间: O(N * M)

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程