sciPy stats.trimboth()函数| Python
scipy.stats.trimboth(a, ratiotocut, axis=0)函数从两端切掉数组中的元素部分。
Parameters :
arr : [array_like] Input array or object to trim.
axis : Axis along which the mean is to be computed. By default axis = 0.
proportiontocut : Proportion (in range 0-1) of data to trim of each end.
Results : trimmed array elements from both the ends in the given proportion.
代码 #1:工作
# stats.trimboth() method
import numpy as np
from scipy import stats
arr1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
print ("\narr1 : ", arr1)
print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .3))
print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .1))
输出 :
arr1 : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
clipped arr1 :
[3 4 5 6]
clipped arr1 :
[1 3 2 4 5 6 7 8]
代码#2:
# stats.trimboth() method
import numpy as np
from scipy import stats
arr1 = [[0, 12, 21, 3, 14],
[53, 16, 37, 85, 39]]
print ("\narr1 : ", arr1)
print ("\nclipped arr1 : \n",
stats.trimboth(arr1, proportiontocut = .3))
print ("\nclipped arr1 : \n",
stats.trimboth(arr1, proportiontocut = .1))
print ("\nclipped arr1 : \n",
stats.trimboth(arr1, proportiontocut = .1, axis = 1))
print ("\nclipped arr1 : \n",
stats.trimboth(arr1, proportiontocut = .1, axis = 0))
输出 :
arr1 : [[0, 12, 21, 3, 14], [53, 16, 37, 85, 39]]
clipped arr1 :
[[ 0 12 21 3 14]
[53 16 37 85 39]]
clipped arr1 :
[[ 0 12 21 3 14]
[53 16 37 85 39]]
clipped arr1 :
[[ 0 3 12 14 21]
[16 37 39 53 85]]
clipped arr1 :
[[ 0 12 21 3 14]
[53 16 37 85 39]]