Mahotas – 来自正常图像的标记图像
在本文中,我们将了解如何从 mahotas 中的普通图像创建标记图像。为此,我们将使用来自核分割基准的荧光显微镜图像。我们可以在下面给出的命令的帮助下获取图像
mhotas.demos.nuclear_image()
下面是nuclear_image
标记图像是整数图像,其中值对应于不同区域。即,区域 1 是所有值为 1 的像素,区域 2 是值为 2 的像素,依此类推
为此,我们将使用 mahotas.label 方法
Syntax : mahotas.label(image)
Argument : It takes loaded image object as argument
Return : It returns the labelled image and the integer i.e number of labels
注意:标签的输入应该是过滤后的图像对象,它应该具有阈值,并且最好图像应该具有高斯滤波器以去除更锐利的边缘。
为了过滤图像,我们将获取图像对象 numpy.ndarray 并在索引的帮助下对其进行过滤,下面是执行此操作的命令
image = image[:, :, 0]
示例 1:
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import imshow, show
import os
# loading nuclear image
f = mahotas.demos.load('nuclear')
# setting filter to the image
f = f[:, :, 0]
# show the image
print("Image")
imshow(f)
show()
# setting gaussian filter
f = mahotas.gaussian_filter(f, 4)
# setting threshold value
f = (f> f.mean())
# creating a labelled image
labelled, n_nucleus = mahotas.label(f)
# showing the labelled image
print("Labelled Image")
imshow(labelled)
show()
Python3
# importing required libraries
import numpy as np
import mahotas
from pylab import imshow, show
# loading image
img = mahotas.imread('dog_image.png')
# filtering the image
img = img[:, :, 0]
print("Image")
# showing the image
imshow(img)
show()
# setting gaussian filter
gaussian = mahotas.gaussian_filter(img, 15)
# setting threshold value
gaussian = (gaussian > gaussian.mean())
# creating a labelled image
labelled, n_nucleus = mh.label(gaussian)
print("Labelled Image")
# showing the gaussian filter
imshow(labelled)
show()
输出 :
示例 2:
Python3
# importing required libraries
import numpy as np
import mahotas
from pylab import imshow, show
# loading image
img = mahotas.imread('dog_image.png')
# filtering the image
img = img[:, :, 0]
print("Image")
# showing the image
imshow(img)
show()
# setting gaussian filter
gaussian = mahotas.gaussian_filter(img, 15)
# setting threshold value
gaussian = (gaussian > gaussian.mean())
# creating a labelled image
labelled, n_nucleus = mh.label(gaussian)
print("Labelled Image")
# showing the gaussian filter
imshow(labelled)
show()
输出 :