检查给定的有向图是否强连通 | Set 2(使用 BFS 的 Kosaraju)
给定一个有向图,找出该图是否是强连通的。如果任意两对顶点之间存在路径,则有向图是强连通的。有不同的方法可以检查有向图的连通性,但优化的方法之一是 Kosaraju 的基于 DFS 的简单算法。
Kosaraju 的基于 BFS 的简单算法也与基于 DFS 的算法的工作原理相同。
Following is Kosaraju’s BFS based simple algorithm
that does two BFS traversals of graph:
1) Initialize all vertices as not visited.
2) Do a BFS traversal of graph starting from
any arbitrary vertex v. If BFS traversal
doesn’t visit all vertices, then return false.
3) Reverse all edges (or find transpose or reverse
of graph)
4) Mark all vertices as not visited in reversed graph.
5) Again do a BFS traversal of reversed graph starting
from same vertex v (Same as step 2). If BFS traversal
doesn’t visit all vertices, then return false.
Otherwise, return true.
如果每个节点都可以从顶点 v 到达,并且每个节点都可以到达相同的顶点 v,那么这个想法也很简单,那么图是强连接的。在步骤 2 中,我们检查是否所有顶点都可以从 v 到达。在步骤 5 中,我们检查是否所有顶点都可以到达 v(在反转图中,如果所有顶点都可以从 v 到达,那么所有顶点都可以到达原始图中的 v)。
用一些例子来解释:
示例 1:
给定一个指示检查它是否是强连接的。
第1步:从顶点2开始,得到的BFS是2 3 4 0 1
第 2 步:反转给定的图表后,我们得到了列出的图表。
第 3 步:再次从顶点 2 开始后,BFS 为 2 1 4 0 3
第 4 步:在两种情况下(第 1 步和第 3 步)都没有未访问的顶点。
第 5 步:因此,给定的图是强连接的。
示例 2:
给定一个指示检查它是否是强连接的。
第1步:从顶点2开始,得到的BFS是2 3 4
第 2 步:反转给定的图表后,我们得到了列出的图表。
第 3 步:再次从顶点 2 开始后,BFS 为 2 1 0
第 4 步:原始图中的顶点 0、1 和反向图中的 3、4 保持未访问。
第 5 步:因此,给定的图不是强连接的。
以下是上述算法的实现。
C++
// C++ program to check if a given directed graph
// is strongly connected or not with BFS use
#include
using namespace std;
class Graph
{
int V; // No. of vertices
list *adj; // An array of adjacency lists
// A recursive function to print DFS starting from v
void BFSUtil(int v, bool visited[]);
public:
// Constructor and Destructor
Graph(int V) { this->V = V; adj = new list[V];}
~Graph() { delete [] adj; }
// Method to add an edge
void addEdge(int v, int w);
// The main function that returns true if the
// graph is strongly connected, otherwise false
bool isSC();
// Function that returns reverse (or transpose)
// of this graph
Graph getTranspose();
};
// A recursive function to print DFS starting from v
void Graph::BFSUtil(int v, bool visited[])
{
// Create a queue for BFS
list queue;
// Mark the current node as visited and enqueue it
visited[v] = true;
queue.push_back(v);
// 'i' will be used to get all adjacent vertices
// of a vertex
list::iterator i;
while (!queue.empty())
{
// Dequeue a vertex from queue
v = queue.front();
queue.pop_front();
// Get all adjacent vertices of the dequeued vertex s
// If a adjacent has not been visited, then mark it
// visited and enqueue it
for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
if (!visited[*i])
{
visited[*i] = true;
queue.push_back(*i);
}
}
}
}
// Function that returns reverse (or transpose) of this graph
Graph Graph::getTranspose()
{
Graph g(V);
for (int v = 0; v < V; v++)
{
// Recur for all the vertices adjacent to this vertex
list::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
g.adj[*i].push_back(v);
}
return g;
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
// The main function that returns true if graph
// is strongly connected
bool Graph::isSC()
{
// Step 1: Mark all the vertices as not
// visited (For first BFS)
bool visited[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Step 2: Do BFS traversal starting
// from first vertex.
BFSUtil(0, visited);
// If BFS traversal doesn’t visit all
// vertices, then return false.
for (int i = 0; i < V; i++)
if (visited[i] == false)
return false;
// Step 3: Create a reversed graph
Graph gr = getTranspose();
// Step 4: Mark all the vertices as not
// visited (For second BFS)
for(int i = 0; i < V; i++)
visited[i] = false;
// Step 5: Do BFS for reversed graph
// starting from first vertex.
// Starting Vertex must be same starting
// point of first DFS
gr.BFSUtil(0, visited);
// If all vertices are not visited in
// second DFS, then return false
for (int i = 0; i < V; i++)
if (visited[i] == false)
return false;
return true;
}
// Driver program to test above functions
int main()
{
// Create graphs given in the above diagrams
Graph g1(5);
g1.addEdge(0, 1);
g1.addEdge(1, 2);
g1.addEdge(2, 3);
g1.addEdge(3, 0);
g1.addEdge(2, 4);
g1.addEdge(4, 2);
g1.isSC()? cout << "Yes\n" : cout << "No\n";
Graph g2(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.isSC()? cout << "Yes\n" : cout << "No\n";
return 0;
}
Python3
# Python3 program to check if a given directed graph
# is strongly connected or not with BFS use
from collections import deque
# A recursive function to print DFS starting from v
def BFSUtil(adj, v, visited):
# Create a queue for BFS
queue = deque()
# Mark the current node as visited
# and enqueue it
visited[v] = True
queue.append(v)
# 'i' will be used to get all adjacent
# vertices of a vertex
while (len(queue) > 0):
# Dequeue a vertex from queue
v = queue.popleft()
#print(v)
#queue.pop_front()
# Get all adjacent vertices of the
# dequeued vertex s. If a adjacent
# has not been visited, then mark it
# visited and enqueue it
for i in adj[v]:
if (visited[i] == False):
visited[i] = True
queue.append(i)
return visited
# Function that returns reverse
# (or transpose) of this graph
def getTranspose(adj, V):
g = [[] for i in range(V)]
for v in range(V):
# Recur for all the vertices adjacent to
# this vertex
# list::iterator i
for i in adj[v]:
g[i].append(v)
return g
def addEdge(adj, v, w):
# Add w to v’s list.
adj[v].append(w)
return adj
# The main function that returns True if graph
# is strongly connected
def isSC(adj, V):
# Step 1: Mark all the vertices as not
# visited (For first BFS)
visited = [False]*V
# Step 2: Do BFS traversal starting
# from first vertex.
visited = BFSUtil(adj, 0, visited)
# print(visited)
# If BFS traversal doesn’t visit all
# vertices, then return false.
for i in range(V):
if (visited[i] == False):
return False
# Step 3: Create a reversed graph
adj = getTranspose(adj, V)
# Step 4: Mark all the vertices as not
# visited (For second BFS)
for i in range(V):
visited[i] = False
# Step 5: Do BFS for reversed graph
# starting from first vertex.
# Starting Vertex must be same starting
# point of first DFS
visited = BFSUtil(adj, 0, visited)
# If all vertices are not visited in
# second DFS, then return false
for i in range(V):
if (visited[i] == False):
return False
return True
# Driver code
if __name__ == '__main__':
# Create graphs given in the above diagrams
g1 = [[] for i in range(5)]
g1 = addEdge(g1, 0, 1)
g1 = addEdge(g1, 1, 2)
g1 = addEdge(g1, 2, 3)
g1 = addEdge(g1, 3, 0)
g1 = addEdge(g1, 2, 4)
g1 = addEdge(g1, 4, 2)
#print(g1)
print("Yes" if isSC(g1, 5) else "No")
g2 = [[] for i in range(4)]
g2 = addEdge(g2, 0, 1)
g2 = addEdge(g2, 1, 2)
g2 = addEdge(g2, 2, 3)
print("Yes" if isSC(g2, 4) else "No")
# This code is contributed by mohit kumar 29
输出:
Yes
No
时间复杂度:上述实现的时间复杂度与广度优先搜索相同,如果使用邻接矩阵表示来表示图形,则为 O(V+E)。