📜  Mahotas – 图像的偏心

📅  最后修改于: 2022-05-13 01:55:47.663000             🧑  作者: Mango

Mahotas – 图像的偏心

在本文中,我们将了解如何在 mahotas 中获得图像的偏心率。偏心率测量从给定顶点 v 到连通图的任何其他顶点 w 的最短路径长度。为每个顶点 v 计算,它将图的连接结构转换为一组值。对于数字图像的连接区域,它是通过其邻域图和给定度量来定义的。

mahotas.demos.load('lena')

下面是莉娜的图片

注意:输入图像应被过滤或应加载为灰色
为了过滤图像,我们将获取图像对象 numpy.ndarray 并在索引的帮助下对其进行过滤,下面是执行此操作的命令

image = image[:, :, 0]

下面是实现

Python3
# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
import matplotlib.pyplot as plt
   
# loading image
img = mahotas.demos.load('lena')
   
# filtering image
img = img.max(2)
 
print("Image")
   
# showing image
imshow(img)
show()
 
# computing eccentricity value
value = mahotas.features.eccentricity(img)
  
 
# showing value
print("Eccentricity value = " + str(value))


Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
  
# loading image
img = mahotas.imread('dog_image.png')
 
 
# filtering image
img = img[:, :, 0]
   
print("Image")
   
# showing image
imshow(img)
show()
 
# computing eccentricity value
value = mahotas.features.eccentricity(img)
  
 
# showing value
print("Eccentricity value = " + str(value))


输出 :

Image

Eccentricity value = 0.0

另一个例子

Python3

# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
  
# loading image
img = mahotas.imread('dog_image.png')
 
 
# filtering image
img = img[:, :, 0]
   
print("Image")
   
# showing image
imshow(img)
show()
 
# computing eccentricity value
value = mahotas.features.eccentricity(img)
  
 
# showing value
print("Eccentricity value = " + str(value))

输出 :

Image

Eccentricity value = 0.7950893156644899