在 Pandas 系列中将 multiIndex 连接成单个索引
在本文中,我们将看到如何在 Pandas Series 中将多索引连接到单个索引。多索引是指有多个同名索引。
创建示例系列:
Python3
# importing pandas module
import pandas as pd
import numpy as np
# Creating series data for address details
index_values = pd.Series([('sravan', 'address1'),
('sravan', 'address2'),
('sudheer', 'address1'),
('sudheer', 'address2')])
# assigning values with integers
data = pd.Series(np.arange(1, 5),
index=index_values)
# display data
print(data)
Python3
# importing pandas module
import pandas as pd
# Creating series data for address details
index_values = pd.Series([('sravan', 'address1'),
('sravan', 'address2'),
('sudheer', 'address1'),
('sudheer', 'address2')])
# assigning values with integers
data = pd.Series(np.arange(1, 5), index=index_values)
# display data
print(data)
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
print(data1)
Python3
# importing pandas module
import pandas as pd
# importing numpy module
import numpy as np
# Creating series data for address details with same name.
index_values = pd.Series([('sravan', 'address1'),
('sravan', 'address2'),
('sravan', 'address3'),
('sravan', 'address4')])
# assigning values with integers
data = pd.Series(np.arange(1, 5),
index=index_values)
# display data
print(data)
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
print(data1)
Python3
# importing pandas module
import pandas as pd
# importing numpy module
import numpy as np
# Creating series data for address details
# with same name with nested lists.
index_values = pd.Series([['sravan', 'address1'],
['sravan', 'address2'],
['sravan', 'address3'],
['sravan', 'address4'],
['vani', 'address5'],
['vani', 'address6'],
['vani', 'address7'],
['vani', 'address8']])
# assigning values with integers
data = pd.Series(np.arange(1, 9),
index=index_values)
# display data
print(data)
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
print(data1)
Python3
# importing pandas module
import pandas as pd
# importing numpy module
import numpy as np
# Creating series data for address details w.r.t
# college names with same name with nested lists.
index_values = pd.Series([['sravan', 'address1', 'vignan'],
['sravan', 'address2', 'vignan'],
['sravan', 'address3', 'vignan'],
['sravan', 'address4', 'vignan'],
['vani', 'address5', 'vignan lara'],
['vani', 'address6', 'vignan lara'],
['vani', 'address7', 'vignan lara'],
['vani', 'address8', 'vignan lara']])
# assigning values with integers
data = pd.Series(np.arange(1, 9),
index=index_values)
# display data
print(data)
# mapping with data using '/' symbol with join
data1 = data.index.map('/'.join)
print(data1)
输出:
连接两个或多个数据称为串联。在这里,我们将使用map函数连接索引。
句法:
map(fun, iter)
- fun: function
- iter: iterations.
以下是描述如何将多索引串联成系列中的单个索引的各种示例:
示例 1:
这段代码解释了基于多索引的地址合并。
蟒蛇3
# importing pandas module
import pandas as pd
# Creating series data for address details
index_values = pd.Series([('sravan', 'address1'),
('sravan', 'address2'),
('sudheer', 'address1'),
('sudheer', 'address2')])
# assigning values with integers
data = pd.Series(np.arange(1, 5), index=index_values)
# display data
print(data)
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
print(data1)
输出:
示例 2:
此代码是所有给定相同名称但在元组中传递不同值的示例。
蟒蛇3
# importing pandas module
import pandas as pd
# importing numpy module
import numpy as np
# Creating series data for address details with same name.
index_values = pd.Series([('sravan', 'address1'),
('sravan', 'address2'),
('sravan', 'address3'),
('sravan', 'address4')])
# assigning values with integers
data = pd.Series(np.arange(1, 5),
index=index_values)
# display data
print(data)
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
print(data1)
输出:
示例 3:
此代码给出了嵌套列表数据结构中给出的多个用户的演示。
蟒蛇3
# importing pandas module
import pandas as pd
# importing numpy module
import numpy as np
# Creating series data for address details
# with same name with nested lists.
index_values = pd.Series([['sravan', 'address1'],
['sravan', 'address2'],
['sravan', 'address3'],
['sravan', 'address4'],
['vani', 'address5'],
['vani', 'address6'],
['vani', 'address7'],
['vani', 'address8']])
# assigning values with integers
data = pd.Series(np.arange(1, 9),
index=index_values)
# display data
print(data)
# mapping with data using '_' symbol with join
data1 = data.index.map('_'.join)
print(data1)
输出:
示例 4:
此代码解释了与在由 '/'运算符分隔的嵌套列表中传递的地址相关的大学数据。
蟒蛇3
# importing pandas module
import pandas as pd
# importing numpy module
import numpy as np
# Creating series data for address details w.r.t
# college names with same name with nested lists.
index_values = pd.Series([['sravan', 'address1', 'vignan'],
['sravan', 'address2', 'vignan'],
['sravan', 'address3', 'vignan'],
['sravan', 'address4', 'vignan'],
['vani', 'address5', 'vignan lara'],
['vani', 'address6', 'vignan lara'],
['vani', 'address7', 'vignan lara'],
['vani', 'address8', 'vignan lara']])
# assigning values with integers
data = pd.Series(np.arange(1, 9),
index=index_values)
# display data
print(data)
# mapping with data using '/' symbol with join
data1 = data.index.map('/'.join)
print(data1)
输出: