如何在 Pandas 中展平 MultiIndex?
在本文中,我们将讨论如何在 pandas 中展平 multiIndex。
展平所有级别的 MultiIndex:
在这种方法中,我们将使用 reset_index()函数来平整数据帧的所有级别。
语法:
dataframe.reset_index(inplace=True)
注意: Dataframe 是输入数据框,我们要创建数据框 MultiIndex。
语法:
MultiIndex.from_tuples([(tuple1),.......,(tuple n),names=[column_names])
论据:
- 元组是值
- 列名是每个元组值中的列名
示例:
在此示例中,我们将创建一个数据框以及 multiIndex 并以Python编程语言显示它。
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
# display
data
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
# flatten the index of all levels
data.reset_index(inplace=True)
# display
data
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
# flatten the index of level with course column
data.reset_index(inplace=True, level=['Course'])
# display
data
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
# flatten the index of level with course
# and subject id columns
data.reset_index(inplace=True, level=['Course', 'subject id'])
# display
data
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
pd.DataFrame(data.to_records())
输出:
现在,我们将展平所有级别的索引:
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
# flatten the index of all levels
data.reset_index(inplace=True)
# display
data
输出:
展平 MultiIndex 的特定级别
通过使用特定级别,我们可以使用以下语法获得:
dataframe.reset_index(inplace=True,level=['level_name'])
在哪里
- 数据框是输入数据框
- level_name 是多索引级别的名称
例子:
在此示例中,我们将创建一个数据框并展平特定级别的 multiIndex 并以Python编程语言显示它。
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
# flatten the index of level with course column
data.reset_index(inplace=True, level=['Course'])
# display
data
输出:
我们还可以指定多个级别;
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
# flatten the index of level with course
# and subject id columns
data.reset_index(inplace=True, level=['Course', 'subject id'])
# display
data
输出:
使用 to_records() 方法
这是一个 pandas 模块方法,用于将多索引数据帧转换为每个记录并显示。
语法:
dataframe.to_records()
例子:
Python3
import pandas as pd
# create DataFrame muktiindexex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
('Scripting', 'python', 'sub2'),
('networks', 'computer network', 'sub3'),
('architecture', 'computer organization', 'sub4'),
('coding', 'java', 'sub5')],
names=['Course', 'Subject name', 'subject id'])
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
'reshma': [78, 89, 80, 98, 63],
'sahithi': [78, 89, 80, 98, 63]},
index=data)
pd.DataFrame(data.to_records())
输出: