📅  最后修改于: 2021-01-23 06:56:31             🧑  作者: Mango
以下是Tutorialspoint统计信息教程中使用的统计信息公式的列表。每个公式都链接到描述如何使用公式的网页。
调整后的R平方-$ {R_ {adj} ^ 2 = 1-[\ frac {(1-R ^ 2)(n-1)} {nk-1}]} $
算术平均值-$ \ bar {x} = \ frac {_ {\ sum {x}}} {N} $
算术中位数-中位数= $ \ frac {N + 1} {2})^ {th} \ item $的值
算术范围-$ {系数\ of \范围= \ frac {LS} {L + S}} $
切比雪夫定理-$ {1- \ frac {1} {k ^ 2}} $
循环排列-$ {P_n =(n-1)!} $
科恩的卡伯系数-$ {k = \ frac {p_0-p_e} {1-p_e} = 1-\ frac {1-p_o} {1-p_e}} $
组合-$ {C(n,r)= \ frac {n!} {r!(nr)!}} $
结合替换-$ {^^ C_r = \ frac {(n + r-1)!} {r!(n-1)!}} $
连续均匀分布-f(x)= $ \ begin {cases} 1 /(ba),&\ text {当$ a \ le x \ le b $} \\ 0,&\ text {当$ x \ lt a时$或$ x \ gt b $} \ end {cases} $
变异系数-$ {CV = \ frac {\ sigma} {X} \ times 100} $
相关系数-$ {r = \ frac {N \ sum xy-(\ sum x)(\ sum y)} {\ sqrt {[N \ sum x ^ 2-(\ sum x)^ 2] [N \ sum y ^ 2-(\ sum y)^ 2]}}} $
累积泊松分布-$ {F(x,\ lambda)= \ sum_ {k = 0} ^ x \ frac {e ^ {-\ lambda} \ lambda ^ x} {k!}} $
十分位数统计-$ {D_i = l + \ frac {h} {f}(\ frac {iN} {10}-c); i = 1,2,3 …,9} $
十分位数统计-$ {D_i = l + \ frac {h} {f}(\ frac {iN} {10}-c); i = 1,2,3 …,9} $
阶乘-$ {n! = 1 \时间2 \时间3 … \时间n} $
几何均值-$ GM = \ sqrt [n] {x_1x_2x_3 … x_n} $
几何概率分布-$ {P(X = x)= p \ time q ^ {x-1}} $
均值-$ {X_ {GM} = \ frac {\ sum x} {N}} $
谐波均值-$ HM = \ frac {W} {\ sum(\ frac {W} {X})} $
谐波均值-$ HM = \ frac {W} {\ sum(\ frac {W} {X})} $
超几何分布-$ {h(x; N,n,K)= \ frac {[C(k,x)] [C(Nk,nx)]} {C(N,n)}} $
间隔估计-$ {\ mu = \ bar x \ pm Z _ {\ frac {\ alpha} {2}} \ frac {\ sigma} {\ sqrt n}} $
Logistic回归-$ {\ pi(x)= \ frac {e ^ {\ alpha + \ beta x}} {1 + e ^ {\ alpha + \ beta x}}} $
平均偏差-$ {MD} = \ frac {1} {N} \ sum {| XA |} = \ frac {\ sum {| D |}} {N} $
均值差-$ {Mean \ Difference = \ frac {\ sum x_1} {n}-\ frac {\ sum x_2} {n}} $
多项式分布-$ {P_r = \ frac {n!} {(n_1!)(n_2!)…(n_x!)} {P_1} ^ {n_1} {P_2} ^ {n_2} … {P_x} ^ {n_x}} $
负二项式分布-$ {f(x)= P(X = x)=(x-1r-1)(1-p)x-rpr} $
正态分布-$ {y = \ frac {1} {\ sqrt {2 \ pi}} e ^ {\ frac {-(x-\ mu)^ 2} {2 \ sigma}}} $
一个比例Z检验-$ {z = \ frac {\ hat p -p_o} {\ sqrt {\ frac {p_o(1-p_o)} {n}}}} $
排列-$ {{{^^ P_r = \ frac {n!} {(nr)!}} $
置换置换-$ {^^ P_r = n ^ r} $
泊松分布-$ {P(Xx)} = {e ^ {-m}}。\ frac {m ^ x} {x!} $
概率-$ {P(A)= \ frac {数量\有利\情况}} {Total \ Number \ of \平均\可能性\情况} = \ frac {m} {n}} $
概率加定理-$ {P(A \或\ B)= P(A)+ P(B)\\ [7pt] P(A \ cup B)= P(A)+ P(B)} $
概率乘法定理-$ {P(A \ and \ B)= P(A)\ times P(B)\\ [7pt] P(AB)= P(A)\ times P(B)} $
概率贝叶斯定理-$ {P(A_i / B)= \ frac {P(A_i)\ times P(B / A_i)} {\ sum_ {i = 1} ^ k P(A_i)\ times P(B / A_i )}} $
概率密度函数-$ {P(a \ le X \ le b)= \ int_a ^ bf(x)d_x} $
可靠性系数-$ {可靠性\系数,\ RC =(\ frac {N} {(N-1)})\ times(\ frac {(Total \ Variance \-Sum \ of \ Variance)} {Total Variance}} } $
残差平方和-$ {RSS = \ sum_ {i = 0} ^ n(\ epsilon_i)^ 2 = \ sum_ {i = 0} ^ n(y_i-(\ alpha + \ beta x_i))^ 2} $
香农维纳多样性指数-$ {H = \ sum [(p_i)\ time ln(p_i)]} $
标准偏差-$ \ sigma = \ sqrt {\ frac {\ sum_ {i = 1} ^ n {(x- \ bar x)^ 2}} {N-1}} $
标准错误(SE) -$ SE_ \ bar {x} = \ frac {s} {\ sqrt {n}} $
平方和-$ {Sum \ of \ Squares \ = \ sum(x_i-\ bar x)^ 2} $
均值-$ \ mu = \ frac {\ sum {X_i}} {n} $