📌  相关文章
📜  细分树|集合3(给定范围的XOR)

📅  最后修改于: 2021-04-17 12:57:17             🧑  作者: Mango

我们有一个数组arr [0。 。 。 n-1]。查询有两种类型

  1. 查找元素从索引l到r的XOR,其中0 <= l <= r <= n-1
  2. 将数组的指定元素的值更改为新值x。我们需要做arr [i] = x,其中0 <= i <= n-1。

总共将有q个查询。

输入约束

n <= 10^5, q <= 10^5

解决方案1
一个简单的解决方案是运行从l到r的循环,并计算给定范围内元素的异或。要更新值,只需做arr [i] = x。第一次操作花费O(n)时间,第二次操作花费O(1)时间。最坏情况下,q个查询的时间复杂度为O(n * q)
n〜10 ^ 5和q〜10 ^ 5将花费大量时间。因此,此解决方案将超过时间限制。

解决方案2
另一种解决方案是将xor存储在所有可能的范围内,但存在O(n ^ 2)个可能范围,因此,在n〜10 ^ 5时,它将超过空间复杂度,因此,如果不考虑时间复杂度,我们可以说此解决方案将不起作用。

解决方案3(段树)
先决条件:段树
我们构建给定数组的分段树,使数组元素位于叶子处,内部节点存储在其下覆盖的叶子的XOR。

C
// C program to show segment tree operations like construction,
// query and update
#include 
#include 
#include 
  
// A utility function to get the middle index from corner indexes.
int getMid(int s, int e) {  return s + (e -s)/2;  }
  
/*  A recursive function to get the xor of values in given range
    of the array. The following are parameters for this function.
  
    st    --> Pointer to segment tree
    si    --> Index of current node in the segment tree. Initially
              0 is passed as root is always at index 0
    ss & se  --> Starting and ending indexes of the segment
                 represented by current node, i.e., st[si]
    qs & qe  --> Starting and ending indexes of query range */
int getXorUtil(int *st, int ss, int se, int qs, int qe, int si)
{
    // If segment of this node is a part of given range, then return
    // the xor of the segment
    if (qs <= ss && qe >= se)
        return st[si];
  
    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return 0;
  
    // If a part of this segment overlaps with the given range
    int mid = getMid(ss, se);
    return getXorUtil(st, ss, mid, qs, qe, 2*si+1) ^
           getXorUtil(st, mid+1, se, qs, qe, 2*si+2);
}
  
/* A recursive function to update the nodes which have the given
   index in their range. The following are parameters
    st, si, ss and se are same as getXorUtil()
    i    --> index of the element to be updated. This index is
             in input array.
   diff --> Value to be added to all nodes which have i in range */
void updateValueUtil(int *st, int ss, int se, int i, int diff, int si)
{
    // Base Case: If the input index lies outside the range of
    // this segment
    if (i < ss || i > se)
        return;
  
    // If the input index is in range of this node, then update
    // the value of the node and its children
    st[si] = st[si] + diff;
    if (se != ss)
    {
        int mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, diff, 2*si + 1);
        updateValueUtil(st, mid+1, se, i, diff, 2*si + 2);
    }
}
  
// The function to update a value in input array and segment tree.
// It uses updateValueUtil() to update the value in segment tree
void updateValue(int arr[], int *st, int n, int i, int new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n-1)
    {
        printf("Invalid Input");
        return;
    }
  
    // Get the difference between new value and old value
    int diff = new_val - arr[i];
  
    // Update the value in array
    arr[i] = new_val;
  
    // Update the values of nodes in segment tree
    updateValueUtil(st, 0, n-1, i, diff, 0);
}
  
// Return xor of elements in range from index qs (quey start)
// to qe (query end).  It mainly uses getXorUtil()
int getXor(int *st, int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n-1 || qs > qe)
    {
        printf("Invalid Input");
        return -1;
    }
  
    return getXorUtil(st, 0, n-1, qs, qe, 0);
}
  
// A recursive function that constructs Segment Tree for array[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se, int *st, int si)
{
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
  
    // If there are more than one elements, then recur for left and
    // right subtrees and store the xor of values in this node
    int mid = getMid(ss, se);
    st[si] =  constructSTUtil(arr, ss, mid, st, si*2+1) ^
              constructSTUtil(arr, mid+1, se, st, si*2+2);
    return st[si];
}
  
/* Function to construct segment tree from given array. This function
   allocates memory for segment tree and calls constructSTUtil() to
   fill the allocated memory */
int *constructST(int arr[], int n)
{
    // Allocate memory for segment tree
  
    //Height of segment tree
    int x = (int)(ceil(log2(n)));
  
    //Maximum size of segment tree
    int max_size = 2*(int)pow(2, x) - 1;
  
    // Allocate memory
    int *st =  (int *)malloc(sizeof(int)*max_size);
  
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n-1, st, 0);
  
    // Return the constructed segment tree
    return st;
}
  
// Driver program to test above functions
int main()
{
    int arr[] = {1, 3, 5, 7, 9, 11};
    int n = sizeof(arr)/sizeof(arr[0]);
  
    // Build segment tree from given array
    int *st = constructST(arr, n);
  
    // Print xor of values in array from index 1 to 3
    printf("Xor of values in given range = %d\n",
            getXor(st, n, 1, 3));
  
    // Update: set arr[1] = 10 and update corresponding
    // segment tree nodes
    updateValue(arr, st, n, 1, 10);
  
    // Find xor after the value is updated
    printf("Updated xor of values in given range = %d\n",
             getXor(st, n, 1, 3));
    return 0;
}


Java
// Java program to show segment tree operations
// like construction, query and update
class GFG{
 
// A utility function to get the middle
// index from corner indexes.
static int getMid(int s, int e)
{
    return s + (e - s) / 2;
}
 
/*
 * A recursive function to get the xor of values
 * in given range of the array.
 * The following are parameters for this function.
 *
 * st --> Pointer to segment tree
 * si --> Index of current node in the segment tree. Initially
 *        0 is passed as root is always at index 0
 * ss & se --> Starting and ending indexes of the segment
 *             represented by current node, i.e., st[si]
 * qs & qe --> Starting and ending indexes of query range
 */
static int getXorUtil(int[] st, int ss, int se,
                      int qs, int qe, int si)
{
     
    // If segment of this node is a part of
    // given range, then return the xor of
    // the segment
    if (qs <= ss && qe >= se)
        return st[si];
 
    // If segment of this node is
    // outside the given range
    if (se < qs || ss > qe)
        return 0;
 
    // If a part of this segment overlaps
    // with the given range
    int mid = getMid(ss, se);
    return getXorUtil(st, ss, mid, qs,
                      qe, 2 * si + 1) ^
           getXorUtil(st, mid + 1, se, qs,
                      qe, 2 * si + 2);
}
 
/*
 * A recursive function to update the nodes which have the given
 * index in their range. The following are parameters
 * st, si, ss and se are same as getXorUtil()
 * i --> index of the element to be updated. This index is in
 *       input array.
 * diff --> Value to be added to all nodes which have i in range
 */
static void updateValueUtil(int[] st, int ss, int se,
                            int i, int diff, int si)
{
     
    // Base Case: If the input index lies outside the
    // range of this segment
    if (i < ss || i > se)
        return;
 
    // If the input index is in range of this node,
    // then update the value of the node and its children
    st[si] = st[si] + diff;
    if (se != ss)
    {
        int mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, diff,
                         2 * si + 1);
        updateValueUtil(st, mid + 1, se, i, diff, 
                         2 * si + 2);
    }
}
 
// The function to update a value in input array
// and segment tree. It uses updateValueUtil()
// to update the value in segment tree
static void updateValue(int[] arr, int[] st, int n,
                        int i, int new_val)
{
     
    // Check for erroneous input index
    if (i < 0 || i > n - 1)
    {
        System.out.println("Invalid Input");
        return;
    }
 
    // Get the difference between new
    // value and old value
    int diff = new_val - arr[i];
 
    // Update the value in array
    arr[i] = new_val;
 
    // Update the values of nodes in segment tree
    updateValueUtil(st, 0, n - 1, i, diff, 0);
}
 
// Return xor of elements in range from
// index qs (quey start) to qe (query end).
// It mainly uses getXorUtil()
static int getXor(int[] st, int n, int qs, int qe)
{
     
    // Check for erroneous input values
    if (qs < 0 || qe > n - 1 || qs > qe)
    {
        System.out.println("Invalid Input");
        return -1;
    }
 
    return getXorUtil(st, 0, n - 1, qs, qe, 0);
}
 
// A recursive function that constructs Segment
// Tree for array[ss..se]. si is index of current
// node in segment tree st
static int constructSTUtil(int arr[], int ss,
                           int se, int[] st, int si)
{
     
    // If there is one element in array, store
    // it in current node of segment tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
 
    // If there are more than one elements,
    // then recur for left and right subtrees
    // and store the xor of values in this node
    int mid = getMid(ss, se);
    st[si] = constructSTUtil(arr, ss, mid, st,
                             si * 2 + 1) ^
             constructSTUtil(arr, mid + 1, se, st,
                             si * 2 + 2);
    return st[si];
}
 
/*
 * Function to construct segment tree from
 * given array. This function allocates memory
 * for segment tree and calls constructSTUtil()
 * to fill the allocated memory
 */
static int[] constructST(int arr[], int n)
{
     
    // Allocate memory for segment tree
 
    // Height of segment tree
    int x = (int)(Math.ceil(Math.log(n) /
                            Math.log(2)));
 
    // Maximum size of segment tree
    int max_size = 2 * (int) Math.pow(2, x) - 1;
 
    // Allocate memory
    int[] st = new int[max_size];
 
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n - 1, st, 0);
 
    // Return the constructed segment tree
    return st;
}
 
// Driver code
public static void main(String[] args)
{
    int[] arr = { 1, 3, 5, 7, 9, 11 };
    int n = arr.length;
 
    // Build segment tree from given array
    int[] st = constructST(arr, n);
 
    // Print xor of values in array from index 1 to 3
    System.out.printf("Xor of values in given " +
                      "range = %d\n",
                      getXor(st, n, 1, 3));
 
    // Update: set arr[1] = 10 and update
    // corresponding segment tree nodes
    updateValue(arr, st, n, 1, 10);
 
    // Find xor after the value is updated
    System.out.printf("Updated xor of values in " +
                      "given range = %d\n",
                      getXor(st, n, 1, 3));
}
}
 
// This code is contributed by sanjeev2552


输出:

Xor of values in given range = 1
Updated xor of values in given range = 8

时空复杂性
树构建的时间复杂度为O(n)。总共有2n-1个节点,并且在树结构中每个节点的值仅计算一次。
查询的时间复杂度为O(log n)。
更新的时间复杂度也是O(log n)。
总时间复杂度为:构造的O(n)+每个查询的O(log n)= O(n)+ O(n * log n)= O(n * log n)

Time Complexity O(n * log n)
Auxiliary Space  O(n)