📜  每两层后方向改变的层序遍历

📅  最后修改于: 2022-05-13 01:57:00.799000             🧑  作者: Mango

每两层后方向改变的层序遍历

给定一棵二叉树,以这样的方式打印层序遍历:前两层从左到右打印,接下来的两层从右到左打印,然后接下来的两层从左到右,依此类推。所以,问题是在每两层之后反转二叉树的层序遍历的方向。
例子:

Input: 
            1     
          /   \
        2       3
      /  \     /  \
     4    5    6    7
    / \  / \  / \  / \ 
   8  9 3   1 4  2 7  2
     /     / \    \
    16    17  18   19
Output:
1
2 3
7 6 5 4
2 7 2 4 1 3 9 8
16 17 18 19
In the above example, first two levels
are printed from left to right, next two
levels are printed from right to left,
and then last level is printed from 
left to right.

方法:
我们在这里使用队列和堆栈。队列用于执行正常的级别顺序遍历。堆栈用于每两层后反转遍历方向。
在进行正常的级别顺序遍历时,前两级节点在它们从队列中弹出时打印。对于接下来的两个级别,我们不是打印节点,而是将它们推送到堆栈上。当当前级别的所有节点都弹出时,我们打印堆栈中的节点。通过这种方式,我们利用堆栈按从右到左的顺序打印节点。现在对于接下来的两个级别,我们再次对从左到右打印节点进行正常的级别顺序遍历。然后对于接下来的两个节点,我们利用堆栈来实现从右到左的顺序。
这样,我们就可以利用队列和堆栈来实现期望的修改级别顺序遍历。

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程。

C++
// CPP program to print Zig-Zag traversal
// in groups of size 2.
#include 
#include 
#include 
using namespace std;
 
// A Binary Tree Node
struct Node
{
    struct Node* left;
    int data;
    struct Node* right;
};
 
/* Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels */
void modifiedLevelOrder(struct Node* node)
{
    // For null root
    if (node == NULL)
        return;
 
    if (node->left == NULL &&
                      node->right == NULL)
    {
        cout << node->data;
        return;
    }
 
    // Maintain a queue for normal
    // level order traversal
    queue myQueue;
 
    /* Maintain a stack for printing nodes in reverse
       order after they are popped out from queue.*/
    stack myStack;
 
    struct Node* temp = NULL;
 
    // sz is used for storing the count
    // of nodes in a level
    int sz;
 
    // Used for changing the direction
    // of level order traversal
    int ct = 0;
 
    // Used for changing the direction
    // of level order traversal
    bool rightToLeft = false;
 
    // Push root node to the queue
    myQueue.push(node);
 
    // Run this while loop till queue got empty
    while (!myQueue.empty())
    {
        ct++;
 
        sz = myQueue.size();
 
        // Do a normal level order traversal
        for (int i = 0; i < sz; i++)
        {
            temp = myQueue.front();
            myQueue.pop();
 
            /*For printing nodes from left to right,
            simply print the nodes in the order in which
            they are being popped out from the queue.*/
            if (rightToLeft == false)
                cout << temp->data << " ";           
 
            /* For printing nodes
            from right to left,
            push the nodes to stack
            instead of printing them.*/
            else
                myStack.push(temp);           
 
            if (temp->left)
                myQueue.push(temp->left);
 
            if (temp->right)
                myQueue.push(temp->right);
        }
 
        if (rightToLeft == true)
        {
 
            // for printing the nodes in order
            // from right to left
            while (!myStack.empty())
            {
                temp = myStack.top();
                myStack.pop();
 
                cout << temp->data << " ";
            }
        }
 
        /*Change the direction of printing
        nodes after every two levels.*/
        if (ct == 2)
        {
            rightToLeft = !rightToLeft;
            ct = 0;
        }
 
        cout << "\n";
    }
}
 
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Driver program to test above functions
int main()
{
    // Let us create binary tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(3);
    root->left->right->right = newNode(1);
    root->right->left->left = newNode(4);
    root->right->left->right = newNode(2);
    root->right->right->left = newNode(7);
    root->right->right->right = newNode(2);
    root->left->right->left->left = newNode(16);
    root->left->right->left->right = newNode(17);
    root->right->left->right->left = newNode(18);
    root->right->right->left->right = newNode(19);
 
    modifiedLevelOrder(root);
 
    return 0;
}


Java
// Java program to print Zig-Zag traversal
// in groups of size 2.
import java.util.*;
 
class GFG
{
 
// A Binary Tree Node
static class Node
{
    Node left;
    int data;
    Node right;
};
 
/* Function to print the level order of
given binary tree. Direction of printing
level order traversal of binary tree changes
after every two levels */
static void modifiedLevelOrder(Node node)
{
    // For null root
    if (node == null)
        return;
 
    if (node.left == null && node.right == null)
    {
        System.out.print(node.data);
        return;
    }
 
    // Maintain a queue for normal
    // level order traversal
    Queue myQueue = new LinkedList<>();
 
    /* Maintain a stack for
    printing nodes in reverse
    order after they are popped
    out from queue.*/
    Stack myStack = new Stack<>();
 
    Node temp = null;
 
    // sz is used for storing
    // the count of nodes in a level
    int sz;
 
    // Used for changing the direction
    // of level order traversal
    int ct = 0;
 
    // Used for changing the direction
    // of level order traversal
    boolean rightToLeft = false;
 
    // Push root node to the queue
    myQueue.add(node);
 
    // Run this while loop till queue got empty
    while (!myQueue.isEmpty())
    {
        ct++;
 
        sz = myQueue.size();
 
        // Do a normal level order traversal
        for (int i = 0; i < sz; i++)
        {
            temp = myQueue.peek();
            myQueue.remove();
 
            /*For printing nodes from left to right,
            simply print the nodes in the order in which
            they are being popped out from the queue.*/
            if (rightToLeft == false)
                System.out.print(temp.data + " ");        
 
            /* For printing nodes from right to left,
            push the nodes to stack instead of printing them.*/
            else
                myStack.push(temp);        
 
            if (temp.left != null)
                myQueue.add(temp.left);
 
            if (temp.right != null)
                myQueue.add(temp.right);
        }
 
        if (rightToLeft == true)
        {
 
            // for printing the nodes in order
            // from right to left
            while (!myStack.isEmpty())
            {
                temp = myStack.peek();
                myStack.pop();
 
                System.out.print(temp.data + " ");
            }
        }
 
        /*Change the direction of printing
        nodes after every two levels.*/
        if (ct == 2)
        {
            rightToLeft = !rightToLeft;
            ct = 0;
        }
 
        System.out.print("\n");
    }
}
 
// Utility function to create a new tree node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Driver Code
public static void main(String[] args)
{
    // Let us create binary tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
 
    modifiedLevelOrder(root);
}
}
 
// This code is contributed by 29AjayKumar


Python3
# A Binary Tree Node
from collections import deque
 
class Node:
    def __init__(self, x):
        self.data = x
        self.left = None
        self.right = None
 
# /* Function to print level order of
#    given binary tree. Direction of printing
#    level order traversal of binary tree changes
#    after every two levels */
def modifiedLevelOrder(node):
   
    # For null root
    if (node == None):
        return
 
    if (node.left == None and node.right == None):
        print(node.data, end = " ")
        return
 
    # Maintain a queue for normal
    # level order traversal
    myQueue = deque()
 
    # /* Maintain a stack for printing nodes in reverse
    #    order after they are popped out from queue.*/
    myStack = []
 
    temp = None
 
    # sz is used for storing the count
    # of nodes in a level
    sz = 0
 
    # Used for changing the direction
    # of level order traversal
    ct = 0
 
    # Used for changing the direction
    # of level order traversal
    rightToLeft = False
 
    # Push root node to the queue
    myQueue.append(node)
  
    # Run this while loop till queue got empty
    while (len(myQueue) > 0):
        ct += 1
 
        sz = len(myQueue)
 
        # Do a normal level order traversal
        for i in range(sz):
            temp = myQueue.popleft()
 
            # /*For printing nodes from left to right,
            # simply print nodes in the order in which
            # they are being popped out from the queue.*/
            if (rightToLeft == False):
                print(temp.data,end=" ")
 
            # /* For printing nodes
            # from right to left,
            # push the nodes to stack
            # instead of printing them.*/
            else:
                myStack.append(temp)
 
            if (temp.left):
                myQueue.append(temp.left)
 
            if (temp.right):
                myQueue.append(temp.right)
 
        if (rightToLeft == True):
 
            # for printing the nodes in order
            # from right to left
            while (len(myStack) > 0):
                temp = myStack[-1]
                del myStack[-1]
 
                print(temp.data, end = " ")
 
        # /*Change the direction of printing
        # nodes after every two levels.*/
        if (ct == 2):
            rightToLeft = not rightToLeft
            ct = 0
 
        print()
 
# Driver program to test above functions
if __name__ == '__main__':
   
    # Let us create binary tree
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.left.left.left = Node(8)
    root.left.left.right = Node(9)
    root.left.right.left = Node(3)
    root.left.right.right = Node(1)
    root.right.left.left = Node(4)
    root.right.left.right = Node(2)
    root.right.right.left = Node(7)
    root.right.right.right = Node(2)
    root.left.right.left.left = Node(16)
    root.left.right.left.right = Node(17)
    root.right.left.right.left = Node(18)
    root.right.right.left.right = Node(19)
 
    modifiedLevelOrder(root)
 
    # This code is contributed by mohit kumar 29.


C#
// C# program to print Zig-Zag traversal
// in groups of size 2.
using System;
using System.Collections.Generic; 
class GFG
{
 
// A Binary Tree Node
public class Node
{
    public Node left;
    public int data;
    public Node right;
};
 
/* Function to print the level order of
given binary tree. Direction of printing
level order traversal of binary tree changes
after every two levels */
static void modifiedLevelOrder(Node node)
{
    // For null root
    if (node == null)
        return;
 
    if (node.left == null &&
        node.right == null)
    {
        Console.Write(node.data);
        return;
    }
 
    // Maintain a queue for
    // normal level order traversal
    Queue myQueue = new Queue();
 
    /* Maintain a stack for printing nodes
    in reverse order after they are
    popped out from queue.*/
    Stack myStack = new Stack();
    Node temp = null;
 
    // sz is used for storing
    // the count of nodes in a level
    int sz;
 
    // Used for changing the direction
    // of level order traversal
    int ct = 0;
 
    // Used for changing the direction
    // of level order traversal
    bool rightToLeft = false;
 
    // Push root node to the queue
    myQueue.Enqueue(node);
 
    // Run this while loop
    // till queue got empty
    while (myQueue.Count != 0)
    {
        ct++;
        sz = myQueue.Count;
 
        // Do a normal level order traversal
        for (int i = 0; i < sz; i++)
        {
            temp = myQueue.Peek();
            myQueue.Dequeue();
 
            /* For printing nodes from left to right,
            simply print the nodes in the order in which
            they are being popped out from the queue.*/
            if (rightToLeft == false)
                Console.Write(temp.data + " ");        
 
            /* For printing nodes from right to left,
               push the nodes to stack instead of
               printing them.*/
            else
                myStack.Push(temp);        
            if (temp.left != null)
                myQueue.Enqueue(temp.left);
            if (temp.right != null)
                myQueue.Enqueue(temp.right);
        }
        if (rightToLeft == true)
        {
 
            // for printing the nodes in order
            // from right to left
            while (myStack.Count != 0)
            {
                temp = myStack.Peek();
                myStack.Pop();
 
                Console.Write(temp.data + " ");
            }
        }
 
        /*Change the direction of printing
        nodes after every two levels.*/
        if (ct == 2)
        {
            rightToLeft = !rightToLeft;
            ct = 0;
        }
        Console.Write("\n");
    }
}
 
// Utility function to create a new tree node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Driver Code
public static void Main(String[] args)
{
   
    // Let us create binary tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
 
    modifiedLevelOrder(root);
}
}
 
// This code is contributed by Rajput-Ji


Javascript


C++
// CPP program to print Zig-Zag traversal
// in groups of size 2.
#include 
#include 
#include 
 
using namespace std;
 
#define LEFT 0
#define RIGHT 1
#define ChangeDirection(Dir) ((Dir) = 1 - (Dir))
 
// A Binary Tree Node
struct node
{
    int data;
    struct node *left, *right;
};
 
// Utility function to create a new tree node
node* newNode(int data)
{
    node* temp = new node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
/* Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels */
void modifiedLevelOrder(struct node *root)
{
    if (!root)
        return ;
     
    int dir = LEFT;
    struct node *temp;
    queue  Q;
    stack  S;
 
    S.push(root);
     
    // Run this while loop till queue got empty
    while (!Q.empty() || !S.empty())
    {
        while (!S.empty())
        {
            temp = S.top();
            S.pop();
            cout << temp->data << " ";
             
            if (dir == LEFT) {
                if (temp->left)
                    Q.push(temp->left);
                if (temp->right)
                    Q.push(temp->right);
            }
            /* For printing nodes from right to left,
            push the nodes to stack
             instead of printing them.*/
            else {
                if (temp->right)
                    Q.push(temp->right);
                if (temp->left)
                    Q.push(temp->left);
            }
        }
         
        cout << endl;
         
            // for printing the nodes in order
            // from right to left
        while (!Q.empty())
        {
            temp = Q.front();
            Q.pop();
            cout << temp->data << " ";
             
            if (dir == LEFT) {
                if (temp->left)
                    S.push(temp->left);
                if (temp->right)
                    S.push(temp->right);
            } else {
                if (temp->right)
                    S.push(temp->right);
                if (temp->left)
                    S.push(temp->left);
            }
        }
        cout << endl;
 
        // Change the direction of traversal.
        ChangeDirection(dir);
    }
}
 
// Driver program to test above functions
int main()
{
    // Let us create binary tree
    node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(3);
    root->left->right->right = newNode(1);
    root->right->left->left = newNode(4);
    root->right->left->right = newNode(2);
    root->right->right->left = newNode(7);
    root->right->right->right = newNode(2);
    root->left->right->left->left = newNode(16);
    root->left->right->left->right = newNode(17);
    root->right->left->right->left = newNode(18);
    root->right->right->left->right = newNode(19);
 
    modifiedLevelOrder(root);
 
    return 0;
}


Java
// JAVA program to print Zig-Zag traversal
// in groups of size 2.
import java.util.*;
class GFG
{
 
static final int LEFT = 0;
static final int RIGHT = 1;
static  int ChangeDirection(int Dir)
{
     
Dir = 1 - Dir;
return Dir;
}
 
// A Binary Tree Node
static class node
{
    int data;
    node left, right;
};
 
// Utility function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
/* Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels */
static void modifiedLevelOrder(node root)
{
    if (root == null)
        return ;   
    int dir = LEFT;
    node temp;
    Queue  Q = new LinkedList<>();
    Stack  S = new Stack<>();
    S.add(root);
     
    // Run this while loop till queue got empty
    while (!Q.isEmpty() || !S.isEmpty())
    {
        while (!S.isEmpty())
        {
            temp = S.peek();
            S.pop();
            System.out.print(temp.data + " ");
             
            if (dir == LEFT)
            {
                if (temp.left != null)
                    Q.add(temp.left);
                if (temp.right != null)
                    Q.add(temp.right);
            }
           
            /* For printing nodes from right to left,
            push the nodes to stack
             instead of printing them.*/
            else {
                if (temp.right != null)
                    Q.add(temp.right);
                if (temp.left != null)
                    Q.add(temp.left);
            }
        }      
        System.out.println();
         
            // for printing the nodes in order
            // from right to left
        while (!Q.isEmpty())
        {
            temp = Q.peek();
            Q.remove();
            System.out.print(temp.data + " ");
             
            if (dir == LEFT) {
                if (temp.left != null)
                    S.add(temp.left);
                if (temp.right != null)
                    S.add(temp.right);
            } else {
                if (temp.right != null)
                    S.add(temp.right);
                if (temp.left != null)
                    S.add(temp.left);
            }
        }
        System.out.println();
 
        // Change the direction of traversal.
        dir = ChangeDirection(dir);
    }
}
 
// Driver code
public static void main(String[] args)
{
   
    // Let us create binary tree
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
    modifiedLevelOrder(root);
}
}
 
// This code is contributed by Rajput-Ji


Python3
# Python3 program to print Zig-Zag traversal
# in groups of size 2.
LEFT = 0
RIGHT = 1
def ChangeDirection(Dir):
    Dir = 1 - Dir
    return Dir
 
# A Binary Tree Node
class node:
    # Constructor to set the data of
    # the newly created tree node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
""" Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels """
def modifiedLevelOrder(root):
    if (root == None):
        return
    Dir = LEFT
    Q = []
    S = []
    S.append(root)
      
    # Run this while loop till queue got empty
    while (len(Q) > 0 or len(S) > 0):
        while (len(S) > 0):
            temp = S[-1]
            S.pop()
            print(temp.data, end = " ")
              
            if (Dir == LEFT):
                if (temp.left != None):
                    Q.append(temp.left)
                if (temp.right != None):
                    Q.append(temp.right)
            else:
                if (temp.right != None):
                    Q.append(temp.right)
                if (temp.left != None):
                    Q.append(temp.left)
        print()
          
        # for printing the nodes in order
        # from right to left
        while len(Q) > 0:
            temp = Q[0]
            Q.pop(0)
            print(temp.data, end = " ")
              
            if (Dir == LEFT):
                if (temp.left != None):
                    S.append(temp.left)
                if (temp.right != None):
                    S.append(temp.right)
            else:
                if (temp.right != None):
                    S.append(temp.right)
                if (temp.left != None):
                    S.append(temp.left)
        print()
  
        # Change the direction of traversal.
        Dir = ChangeDirection(Dir)
 
# Let us create binary tree
root = node(1)
root.left = node(2)
root.right = node(3)
root.left.left = node(4)
root.left.right = node(5)
root.right.left = node(6)
root.right.right = node(7)
root.left.left.left = node(8)
root.left.left.right = node(9)
root.left.right.left = node(3)
root.left.right.right = node(1)
root.right.left.left = node(4)
root.right.left.right = node(2)
root.right.right.left = node(7)
root.right.right.right = node(2)
root.left.right.left.left = node(16)
root.left.right.left.right = node(17)
root.right.left.right.left = node(18)
root.right.right.left.right = node(19)
modifiedLevelOrder(root)
 
# This code is contributed by suresh07.


C#
// C# program to print Zig-Zag traversal
// in groups of size 2.
using System;
using System.Collections.Generic;
 
 
public class GFG
{
 
static readonly int LEFT = 0;
static readonly int RIGHT = 1;
static  int ChangeDirection(int Dir)
{
     
Dir = 1 - Dir;
return Dir;
}
 
// A Binary Tree Node
public
 
 class node
{
    public
 
 int data;
    public
 
 node left, right;
};
 
// Utility function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
/* Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels */
static void modifiedLevelOrder(node root)
{
    if (root == null)
        return ;   
    int dir = LEFT;
    node temp;
    Queue  Q = new Queue();
    Stack  S = new Stack();
    S.Push(root);
     
    // Run this while loop till queue got empty
    while (Q.Count!=0 || S.Count!=0)
    {
        while (S.Count!=0)
        {
            temp = S.Peek();
            S.Pop();
            Console.Write(temp.data + " ");
             
            if (dir == LEFT)
            {
                if (temp.left != null)
                    Q.Enqueue(temp.left);
                if (temp.right != null)
                    Q.Enqueue(temp.right);
            }
           
            /* For printing nodes from right to left,
            push the nodes to stack
             instead of printing them.*/
            else {
                if (temp.right != null)
                    Q.Enqueue(temp.right);
                if (temp.left != null)
                    Q.Enqueue(temp.left);
            }
        }      
        Console.WriteLine();
         
            // for printing the nodes in order
            // from right to left
        while (Q.Count!=0)
        {
            temp = Q.Peek();
            Q.Dequeue();
            Console.Write(temp.data + " ");
             
            if (dir == LEFT) {
                if (temp.left != null)
                    S.Push(temp.left);
                if (temp.right != null)
                    S.Push(temp.right);
            } else {
                if (temp.right != null)
                    S.Push(temp.right);
                if (temp.left != null)
                    S.Push(temp.left);
            }
        }
        Console.WriteLine();
 
        // Change the direction of traversal.
        dir = ChangeDirection(dir);
    }
}
 
// Driver code
public static void Main(String[] args)
{
   
    // Let us create binary tree
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
    modifiedLevelOrder(root);
}
}
 
// This code contributed by Rajput-Ji


Javascript


Python3
# Python program for above approach
 
# Node class
class Node:
    def __init__(self, key):
        self.left = None
        self.right = None
        self.key = key
 
# Function to calculate height
def heightTree(root):
   
    # Check if root is None
    if root is None:
        return 0
    else:
       
        lheight = heightTree(root.left)
        rheight = heightTree(root.right)
         
        # Check greater between
        # lheight and rheight
        if lheight > rheight:
            return 1 + lheight
        else:
            return 1 + rheight
 
# Function to print 2 levels
def print_2_levels(root):
   
    # Check if root is None
    if root is None:
        return
       
    height = heightTree(root)
    count = 0
     
    # Iterate from 1 to height
    for i in range(1, height+1):
        global stack_struct
        stack_struct = []
         
        # Check is count is less than 2
        if count < 2:
            print_level(root, i, stack=False)
        else:
            print_level(root, i, stack=True)
             
            # Iterate backwards from len(stack_struct)-1
            # till 0
            for i in range(len(stack_struct)-1, -1, -1):
                print(stack_struct[i], end=' ')
            if count == 3:
                count = -1
                 
        # Increment Counter
        count += 1
        print("")
 
# Function to print level
def print_level(root, level, stack=False):
    global stack_struct
     
    # Check if root is None
    if root is None:
        return
       
    # Check is level is 1 and stack is False
    if level == 1 and stack == False:
        print(root.key, end=' ')
         
    # Check if level is 1 and stack is True
    elif level == 1 and stack == True:
        stack_struct.append(root.key)
         
    # Check if level is greater than 1
    elif level > 1:
        print_level(root.left, level-1, stack=stack)
        print_level(root.right, level-1, stack=stack)
         
   
# Driver Code
root = Node(1)
root.left      = Node(2)
root.right     = Node(3)
root.left.left  = Node(4)
root.left.right  = Node(5)
root.right.left = Node(6)
root.right.right = Node(7)
root.left.left.left = Node(8)
root.left.left.right = Node(9)
root.left.right.left = Node(3)
root.left.right.right = Node(1)
root.right.left.left = Node(4)
root.right.left.right = Node(2)
root.right.right.left = Node(7)
root.right.right.right = Node(2)
root.left.left.right.left = Node(16)
root.left.right.right.left = Node(17)
root.left.right.right.right = Node(18)
root.right.left.right.right = Node(19)
print("Different levels:")
 
# Function Call
print_2_levels(root)


输出

1 
2 3 
7 6 5 4 
2 7 2 4 1 3 9 8 
16 17 18 19 

时间复杂度:每个节点在进行层序遍历时最多遍历两次,因此时间复杂度为 O(n)。
方法二:
我们在这里使用队列和堆栈,但方式不同。使用宏#define ChangeDirection(Dir) ((Dir) = 1 – (Dir))。在以下实现中,指示队列或堆栈中推送操作的顺序。
这样,我们就可以利用队列和堆栈来实现期望的修改级别顺序遍历。

C++

// CPP program to print Zig-Zag traversal
// in groups of size 2.
#include 
#include 
#include 
 
using namespace std;
 
#define LEFT 0
#define RIGHT 1
#define ChangeDirection(Dir) ((Dir) = 1 - (Dir))
 
// A Binary Tree Node
struct node
{
    int data;
    struct node *left, *right;
};
 
// Utility function to create a new tree node
node* newNode(int data)
{
    node* temp = new node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
/* Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels */
void modifiedLevelOrder(struct node *root)
{
    if (!root)
        return ;
     
    int dir = LEFT;
    struct node *temp;
    queue  Q;
    stack  S;
 
    S.push(root);
     
    // Run this while loop till queue got empty
    while (!Q.empty() || !S.empty())
    {
        while (!S.empty())
        {
            temp = S.top();
            S.pop();
            cout << temp->data << " ";
             
            if (dir == LEFT) {
                if (temp->left)
                    Q.push(temp->left);
                if (temp->right)
                    Q.push(temp->right);
            }
            /* For printing nodes from right to left,
            push the nodes to stack
             instead of printing them.*/
            else {
                if (temp->right)
                    Q.push(temp->right);
                if (temp->left)
                    Q.push(temp->left);
            }
        }
         
        cout << endl;
         
            // for printing the nodes in order
            // from right to left
        while (!Q.empty())
        {
            temp = Q.front();
            Q.pop();
            cout << temp->data << " ";
             
            if (dir == LEFT) {
                if (temp->left)
                    S.push(temp->left);
                if (temp->right)
                    S.push(temp->right);
            } else {
                if (temp->right)
                    S.push(temp->right);
                if (temp->left)
                    S.push(temp->left);
            }
        }
        cout << endl;
 
        // Change the direction of traversal.
        ChangeDirection(dir);
    }
}
 
// Driver program to test above functions
int main()
{
    // Let us create binary tree
    node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(3);
    root->left->right->right = newNode(1);
    root->right->left->left = newNode(4);
    root->right->left->right = newNode(2);
    root->right->right->left = newNode(7);
    root->right->right->right = newNode(2);
    root->left->right->left->left = newNode(16);
    root->left->right->left->right = newNode(17);
    root->right->left->right->left = newNode(18);
    root->right->right->left->right = newNode(19);
 
    modifiedLevelOrder(root);
 
    return 0;
}

Java

// JAVA program to print Zig-Zag traversal
// in groups of size 2.
import java.util.*;
class GFG
{
 
static final int LEFT = 0;
static final int RIGHT = 1;
static  int ChangeDirection(int Dir)
{
     
Dir = 1 - Dir;
return Dir;
}
 
// A Binary Tree Node
static class node
{
    int data;
    node left, right;
};
 
// Utility function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
/* Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels */
static void modifiedLevelOrder(node root)
{
    if (root == null)
        return ;   
    int dir = LEFT;
    node temp;
    Queue  Q = new LinkedList<>();
    Stack  S = new Stack<>();
    S.add(root);
     
    // Run this while loop till queue got empty
    while (!Q.isEmpty() || !S.isEmpty())
    {
        while (!S.isEmpty())
        {
            temp = S.peek();
            S.pop();
            System.out.print(temp.data + " ");
             
            if (dir == LEFT)
            {
                if (temp.left != null)
                    Q.add(temp.left);
                if (temp.right != null)
                    Q.add(temp.right);
            }
           
            /* For printing nodes from right to left,
            push the nodes to stack
             instead of printing them.*/
            else {
                if (temp.right != null)
                    Q.add(temp.right);
                if (temp.left != null)
                    Q.add(temp.left);
            }
        }      
        System.out.println();
         
            // for printing the nodes in order
            // from right to left
        while (!Q.isEmpty())
        {
            temp = Q.peek();
            Q.remove();
            System.out.print(temp.data + " ");
             
            if (dir == LEFT) {
                if (temp.left != null)
                    S.add(temp.left);
                if (temp.right != null)
                    S.add(temp.right);
            } else {
                if (temp.right != null)
                    S.add(temp.right);
                if (temp.left != null)
                    S.add(temp.left);
            }
        }
        System.out.println();
 
        // Change the direction of traversal.
        dir = ChangeDirection(dir);
    }
}
 
// Driver code
public static void main(String[] args)
{
   
    // Let us create binary tree
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
    modifiedLevelOrder(root);
}
}
 
// This code is contributed by Rajput-Ji

蟒蛇3

# Python3 program to print Zig-Zag traversal
# in groups of size 2.
LEFT = 0
RIGHT = 1
def ChangeDirection(Dir):
    Dir = 1 - Dir
    return Dir
 
# A Binary Tree Node
class node:
    # Constructor to set the data of
    # the newly created tree node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
""" Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels """
def modifiedLevelOrder(root):
    if (root == None):
        return
    Dir = LEFT
    Q = []
    S = []
    S.append(root)
      
    # Run this while loop till queue got empty
    while (len(Q) > 0 or len(S) > 0):
        while (len(S) > 0):
            temp = S[-1]
            S.pop()
            print(temp.data, end = " ")
              
            if (Dir == LEFT):
                if (temp.left != None):
                    Q.append(temp.left)
                if (temp.right != None):
                    Q.append(temp.right)
            else:
                if (temp.right != None):
                    Q.append(temp.right)
                if (temp.left != None):
                    Q.append(temp.left)
        print()
          
        # for printing the nodes in order
        # from right to left
        while len(Q) > 0:
            temp = Q[0]
            Q.pop(0)
            print(temp.data, end = " ")
              
            if (Dir == LEFT):
                if (temp.left != None):
                    S.append(temp.left)
                if (temp.right != None):
                    S.append(temp.right)
            else:
                if (temp.right != None):
                    S.append(temp.right)
                if (temp.left != None):
                    S.append(temp.left)
        print()
  
        # Change the direction of traversal.
        Dir = ChangeDirection(Dir)
 
# Let us create binary tree
root = node(1)
root.left = node(2)
root.right = node(3)
root.left.left = node(4)
root.left.right = node(5)
root.right.left = node(6)
root.right.right = node(7)
root.left.left.left = node(8)
root.left.left.right = node(9)
root.left.right.left = node(3)
root.left.right.right = node(1)
root.right.left.left = node(4)
root.right.left.right = node(2)
root.right.right.left = node(7)
root.right.right.right = node(2)
root.left.right.left.left = node(16)
root.left.right.left.right = node(17)
root.right.left.right.left = node(18)
root.right.right.left.right = node(19)
modifiedLevelOrder(root)
 
# This code is contributed by suresh07.

C#

// C# program to print Zig-Zag traversal
// in groups of size 2.
using System;
using System.Collections.Generic;
 
 
public class GFG
{
 
static readonly int LEFT = 0;
static readonly int RIGHT = 1;
static  int ChangeDirection(int Dir)
{
     
Dir = 1 - Dir;
return Dir;
}
 
// A Binary Tree Node
public
 
 class node
{
    public
 
 int data;
    public
 
 node left, right;
};
 
// Utility function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
/* Function to print the level order of
   given binary tree. Direction of printing
   level order traversal of binary tree changes
   after every two levels */
static void modifiedLevelOrder(node root)
{
    if (root == null)
        return ;   
    int dir = LEFT;
    node temp;
    Queue  Q = new Queue();
    Stack  S = new Stack();
    S.Push(root);
     
    // Run this while loop till queue got empty
    while (Q.Count!=0 || S.Count!=0)
    {
        while (S.Count!=0)
        {
            temp = S.Peek();
            S.Pop();
            Console.Write(temp.data + " ");
             
            if (dir == LEFT)
            {
                if (temp.left != null)
                    Q.Enqueue(temp.left);
                if (temp.right != null)
                    Q.Enqueue(temp.right);
            }
           
            /* For printing nodes from right to left,
            push the nodes to stack
             instead of printing them.*/
            else {
                if (temp.right != null)
                    Q.Enqueue(temp.right);
                if (temp.left != null)
                    Q.Enqueue(temp.left);
            }
        }      
        Console.WriteLine();
         
            // for printing the nodes in order
            // from right to left
        while (Q.Count!=0)
        {
            temp = Q.Peek();
            Q.Dequeue();
            Console.Write(temp.data + " ");
             
            if (dir == LEFT) {
                if (temp.left != null)
                    S.Push(temp.left);
                if (temp.right != null)
                    S.Push(temp.right);
            } else {
                if (temp.right != null)
                    S.Push(temp.right);
                if (temp.left != null)
                    S.Push(temp.left);
            }
        }
        Console.WriteLine();
 
        // Change the direction of traversal.
        dir = ChangeDirection(dir);
    }
}
 
// Driver code
public static void Main(String[] args)
{
   
    // Let us create binary tree
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.left.left.left = newNode(8);
    root.left.left.right = newNode(9);
    root.left.right.left = newNode(3);
    root.left.right.right = newNode(1);
    root.right.left.left = newNode(4);
    root.right.left.right = newNode(2);
    root.right.right.left = newNode(7);
    root.right.right.right = newNode(2);
    root.left.right.left.left = newNode(16);
    root.left.right.left.right = newNode(17);
    root.right.left.right.left = newNode(18);
    root.right.right.left.right = newNode(19);
    modifiedLevelOrder(root);
}
}
 
// This code contributed by Rajput-Ji

Javascript


输出
1 
2 3 
7 6 5 4 
2 7 2 4 1 3 9 8 
16 17 18 19 

时间复杂度:每个节点也遍历两次。时间复杂度仍然是 O(n)。
替代方法(使用递归)

我们利用递归和一个额外的堆栈来解决这个问题。这个解决方案看起来更简单。

蟒蛇3

# Python program for above approach
 
# Node class
class Node:
    def __init__(self, key):
        self.left = None
        self.right = None
        self.key = key
 
# Function to calculate height
def heightTree(root):
   
    # Check if root is None
    if root is None:
        return 0
    else:
       
        lheight = heightTree(root.left)
        rheight = heightTree(root.right)
         
        # Check greater between
        # lheight and rheight
        if lheight > rheight:
            return 1 + lheight
        else:
            return 1 + rheight
 
# Function to print 2 levels
def print_2_levels(root):
   
    # Check if root is None
    if root is None:
        return
       
    height = heightTree(root)
    count = 0
     
    # Iterate from 1 to height
    for i in range(1, height+1):
        global stack_struct
        stack_struct = []
         
        # Check is count is less than 2
        if count < 2:
            print_level(root, i, stack=False)
        else:
            print_level(root, i, stack=True)
             
            # Iterate backwards from len(stack_struct)-1
            # till 0
            for i in range(len(stack_struct)-1, -1, -1):
                print(stack_struct[i], end=' ')
            if count == 3:
                count = -1
                 
        # Increment Counter
        count += 1
        print("")
 
# Function to print level
def print_level(root, level, stack=False):
    global stack_struct
     
    # Check if root is None
    if root is None:
        return
       
    # Check is level is 1 and stack is False
    if level == 1 and stack == False:
        print(root.key, end=' ')
         
    # Check if level is 1 and stack is True
    elif level == 1 and stack == True:
        stack_struct.append(root.key)
         
    # Check if level is greater than 1
    elif level > 1:
        print_level(root.left, level-1, stack=stack)
        print_level(root.right, level-1, stack=stack)
         
   
# Driver Code
root = Node(1)
root.left      = Node(2)
root.right     = Node(3)
root.left.left  = Node(4)
root.left.right  = Node(5)
root.right.left = Node(6)
root.right.right = Node(7)
root.left.left.left = Node(8)
root.left.left.right = Node(9)
root.left.right.left = Node(3)
root.left.right.right = Node(1)
root.right.left.left = Node(4)
root.right.left.right = Node(2)
root.right.right.left = Node(7)
root.right.right.right = Node(2)
root.left.left.right.left = Node(16)
root.left.right.right.left = Node(17)
root.left.right.right.right = Node(18)
root.right.left.right.right = Node(19)
print("Different levels:")
 
# Function Call
print_2_levels(root)
输出
Different levels:
1 
2 3 
7 6 5 4 
2 7 2 4 1 3 9 8 
16 17 18 19 

时间复杂度: O(n),其中 n 是树中的节点数(因为已完成层序遍历,并且每个元素最多遍历两次,即 2*n 次——因此复杂度的顺序为 O(n))。