📜  层序二叉树遍历

📅  最后修改于: 2022-05-13 01:57:00.849000             🧑  作者: Mango

层序二叉树遍历

树的层序遍历是树的广度优先遍历。

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程。

上述树的层序遍历为 1 2 3 4 5



方法一(使用函数打印当前级别)

算法:
这个方法基本上有两个功能。一种是打印给定级别的所有节点(printCurrentLevel),另一种是打印树的级别顺序遍历(printLevelorder)。 printLevelorder 使用printCurrentLevel 从根开始逐一打印所有级别的节点。

/*Function to print level order traversal of tree*/
printLevelorder(tree)
for d = 1 to height(tree)
   printCurrentLevel(tree, d);

/*Function to print all nodes at a current level*/
printCurrentLevel(tree, level)
if tree is NULL then return;
if level is 1, then
    print(tree->data);
else if level greater than 1, then
    printCurrentLevel(tree->left, level-1);
    printCurrentLevel(tree->right, level-1);

执行:

C++
// Recursive CPP program for level
// order traversal of Binary Tree
#include 
using namespace std;
 
/* A binary tree node has data,
pointer to left child
and a pointer to right child */
class node {
public:
    int data;
    node *left, *right;
};
 
/* Function prototypes */
void printCurrentLevel(node* root, int level);
int height(node* node);
node* newNode(int data);
 
/* Function to print level
order traversal a tree*/
void printLevelOrder(node* root)
{
    int h = height(root);
    int i;
    for (i = 1; i <= h; i++)
        printCurrentLevel(root, i);
}
 
/* Print nodes at a current level */
void printCurrentLevel(node* root, int level)
{
    if (root == NULL)
        return;
    if (level == 1)
        cout << root->data << " ";
    else if (level > 1) {
        printCurrentLevel(root->left, level - 1);
        printCurrentLevel(root->right, level - 1);
    }
}
 
/* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
int height(node* node)
{
    if (node == NULL)
        return 0;
    else {
        /* compute the height of each subtree */
        int lheight = height(node->left);
        int rheight = height(node->right);
 
        /* use the larger one */
        if (lheight > rheight) {
            return (lheight + 1);
        }
        else {
            return (rheight + 1);
        }
    }
}
 
/* Helper function that allocates
a new node with the given data and
NULL left and right pointers. */
node* newNode(int data)
{
    node* Node = new node();
    Node->data = data;
    Node->left = NULL;
    Node->right = NULL;
 
    return (Node);
}
 
/* Driver code*/
int main()
{
    node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    cout << "Level Order traversal of binary tree is \n";
    printLevelOrder(root);
 
    return 0;
}
 
// This code is contributed by rathbhupendra


C
// Recursive C program for level
// order traversal of Binary Tree
#include 
#include 
 
/* A binary tree node has data,
   pointer to left child
   and a pointer to right child */
struct node {
    int data;
    struct node *left, *right;
};
 
/* Function prototypes */
void printCurrentLevel(struct node* root, int level);
int height(struct node* node);
struct node* newNode(int data);
 
/* Function to print level order traversal a tree*/
void printLevelOrder(struct node* root)
{
    int h = height(root);
    int i;
    for (i = 1; i <= h; i++)
        printCurrentLevel(root, i);
}
 
/* Print nodes at a current level */
void printCurrentLevel(struct node* root, int level)
{
    if (root == NULL)
        return;
    if (level == 1)
        printf("%d ", root->data);
    else if (level > 1) {
        printCurrentLevel(root->left, level - 1);
        printCurrentLevel(root->right, level - 1);
    }
}
 
/* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
int height(struct node* node)
{
    if (node == NULL)
        return 0;
    else {
        /* compute the height of each subtree */
        int lheight = height(node->left);
        int rheight = height(node->right);
 
        /* use the larger one */
        if (lheight > rheight)
            return (lheight + 1);
        else
            return (rheight + 1);
    }
}
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newNode(int data)
{
    struct node* node
        = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
/* Driver program to test above functions*/
int main()
{
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    printf("Level Order traversal of binary tree is \n");
    printLevelOrder(root);
 
    return 0;
}


Java
// Recursive Java program for level
// order traversal of Binary Tree
 
/* Class containing left and right child of current
   node and key value*/
class Node {
    int data;
    Node left, right;
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class BinaryTree {
    // Root of the Binary Tree
    Node root;
 
    public BinaryTree() { root = null; }
 
    /* function to print level order traversal of tree*/
    void printLevelOrder()
    {
        int h = height(root);
        int i;
        for (i = 1; i <= h; i++)
            printCurrentLevel(root, i);
    }
 
    /* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
    int height(Node root)
    {
        if (root == null)
            return 0;
        else {
            /* compute  height of each subtree */
            int lheight = height(root.left);
            int rheight = height(root.right);
 
            /* use the larger one */
            if (lheight > rheight)
                return (lheight + 1);
            else
                return (rheight + 1);
        }
    }
 
    /* Print nodes at the current level */
    void printCurrentLevel(Node root, int level)
    {
        if (root == null)
            return;
        if (level == 1)
            System.out.print(root.data + " ");
        else if (level > 1) {
            printCurrentLevel(root.left, level - 1);
            printCurrentLevel(root.right, level - 1);
        }
    }
 
    /* Driver program to test above functions */
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
 
       System.out.println("Level order traversal of
                                 binary tree is ");
       tree.printLevelOrder();
    }
}


Python3
# Recursive Python program for level
# order traversal of Binary Tree
 
# A node structure
 
 
class Node:
 
    # A utility function to create a new node
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
 
 
# Function to  print level order traversal of tree
def printLevelOrder(root):
    h = height(root)
    for i in range(1, h+1):
        printCurrentLevel(root, i)
 
 
# Print nodes at a current level
def printCurrentLevel(root, level):
    if root is None:
        return
    if level == 1:
        print(root.data, end=" ")
    elif level > 1:
        printCurrentLevel(root.left, level-1)
        printCurrentLevel(root.right, level-1)
 
 
""" Compute the height of a tree--the number of nodes
    along the longest path from the root node down to
    the farthest leaf node
"""
 
 
def height(node):
    if node is None:
        return 0
    else:
        # Compute the height of each subtree
        lheight = height(node.left)
        rheight = height(node.right)
 
        # Use the larger one
        if lheight > rheight:
            return lheight+1
        else:
            return rheight+1
 
 
# Driver program to test above function
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
 
print("Level order traversal of binary tree is -")
printLevelOrder(root)
 
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#
// Recursive c# program for level
// order traversal of Binary Tree
using System;
 
/* Class containing left and right
   child of current node and key value*/
public class Node {
    public int data;
    public Node left, right;
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class GFG {
    // Root of the Binary Tree
    public Node root;
 
    public void BinaryTree() { root = null; }
 
    /* function to print level order
       traversal of tree*/
    public virtual void printLevelOrder()
    {
        int h = height(root);
        int i;
        for (i = 1; i <= h; i++) {
            printCurrentLevel(root, i);
        }
    }
 
    /* Compute the "height" of a tree --
    the number of nodes along the longest
    path from the root node down to the
    farthest leaf node.*/
    public virtual int height(Node root)
    {
        if (root == null) {
            return 0;
        }
        else {
            /* compute height of each subtree */
            int lheight = height(root.left);
            int rheight = height(root.right);
 
            /* use the larger one */
            if (lheight > rheight) {
                return (lheight + 1);
            }
            else {
                return (rheight + 1);
            }
        }
    }
 
    /* Print nodes at the current level */
    public virtual void printCurrentLevel(Node root,
                                          int level)
    {
        if (root == null) {
            return;
        }
        if (level == 1) {
            Console.Write(root.data + " ");
        }
        else if (level > 1) {
            printCurrentLevel(root.left, level - 1);
            printCurrentLevel(root.right, level - 1);
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        GFG tree = new GFG();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
 
        Console.WriteLine("Level order traversal "
                          + "of binary tree is ");
        tree.printLevelOrder();
    }
}
 
// This code is contributed by Shrikant13


C++
/* C++ program to print level
    order traversal using STL */
#include 
using namespace std;
 
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Iterative method to find height of Binary Tree
void printLevelOrder(Node* root)
{
    // Base Case
    if (root == NULL)
        return;
 
    // Create an empty queue for level order traversal
    queue q;
 
    // Enqueue Root and initialize height
    q.push(root);
 
    while (q.empty() == false) {
        // Print front of queue and remove it from queue
        Node* node = q.front();
        cout << node->data << " ";
        q.pop();
 
        /* Enqueue left child */
        if (node->left != NULL)
            q.push(node->left);
 
        /*Enqueue right child */
        if (node->right != NULL)
            q.push(node->right);
    }
}
 
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Driver program to test above functions
int main()
{
    // Let us create binary tree shown in above diagram
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    cout << "Level Order traversal of binary tree is \n";
    printLevelOrder(root);
    return 0;
}


C
// Iterative Queue based C program
// to do level order traversal
// of Binary Tree
#include 
#include 
#define MAX_Q_SIZE 500
 
/* A binary tree node has data,
   pointer to left child
   and a pointer to right child */
struct node {
    int data;
    struct node* left;
    struct node* right;
};
 
/* frunction prototypes */
struct node** createQueue(int*, int*);
void enQueue(struct node**, int*, struct node*);
struct node* deQueue(struct node**, int*);
 
/* Given a binary tree, print its nodes in level order
   using array for implementing queue */
void printLevelOrder(struct node* root)
{
    int rear, front;
    struct node** queue = createQueue(&front, &rear);
    struct node* temp_node = root;
 
    while (temp_node) {
        printf("%d ", temp_node->data);
 
        /*Enqueue left child */
        if (temp_node->left)
            enQueue(queue, &rear, temp_node->left);
 
        /*Enqueue right child */
        if (temp_node->right)
            enQueue(queue, &rear, temp_node->right);
 
        /*Dequeue node and make it temp_node*/
        temp_node = deQueue(queue, &front);
    }
}
 
/*UTILITY FUNCTIONS*/
struct node** createQueue(int* front, int* rear)
{
    struct node** queue = (struct node**)malloc(
        sizeof(struct node*) * MAX_Q_SIZE);
 
    *front = *rear = 0;
    return queue;
}
 
void enQueue(struct node** queue, int* rear,
             struct node* new_node)
{
    queue[*rear] = new_node;
    (*rear)++;
}
 
struct node* deQueue(struct node** queue, int* front)
{
    (*front)++;
    return queue[*front - 1];
}
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newNode(int data)
{
    struct node* node
        = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
/* Driver program to test above functions*/
int main()
{
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    printf("Level Order traversal of binary tree is \n");
    printLevelOrder(root);
 
    return 0;
}


Java
// Iterative Queue based Java program
// to do level order traversal
// of Binary Tree
 
/* importing the inbuilt java classes
   required for the program */
import java.util.LinkedList;
import java.util.Queue;
 
/* Class to represent Tree node */
class Node {
    int data;
    Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = null;
        right = null;
    }
}
 
/* Class to print Level Order Traversal */
class BinaryTree {
 
    Node root;
 
    /* Given a binary tree. Print
     its nodes in level order
     using array for implementing queue  */
    void printLevelOrder()
    {
        Queue queue = new LinkedList();
        queue.add(root);
        while (!queue.isEmpty()) {
 
            /* poll() removes the present head.
            For more information on poll() visit
            http://www.tutorialspoint.com/java/
            util/linkedlist_poll.htm */
            Node tempNode = queue.poll();
            System.out.print(tempNode.data + " ");
 
            /*Enqueue left child */
            if (tempNode.left != null) {
                queue.add(tempNode.left);
            }
 
            /*Enqueue right child */
            if (tempNode.right != null) {
                queue.add(tempNode.right);
            }
        }
    }
 
    public static void main(String args[])
    {
        /* creating a binary tree and entering
         the nodes */
        BinaryTree tree_level = new BinaryTree();
        tree_level.root = new Node(1);
        tree_level.root.left = new Node(2);
        tree_level.root.right = new Node(3);
        tree_level.root.left.left = new Node(4);
        tree_level.root.left.right = new Node(5);
 
        System.out.println("Level order traversal
                            of binary tree is - ");
        tree_level.printLevelOrder();
    }
}


Python3
# Python program to print level
# order traversal using Queue
 
# A node structure
 
 
class Node:
    # A utility function to create a new node
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
 
# Iterative Method to print the
# height of a binary tree
 
 
def printLevelOrder(root):
    # Base Case
    if root is None:
        return
 
    # Create an empty queue
    # for level order traversal
    queue = []
 
    # Enqueue Root and initialize height
    queue.append(root)
 
    while(len(queue) > 0):
 
        # Print front of queue and
        # remove it from queue
        print(queue[0].data)
        node = queue.pop(0)
 
        # Enqueue left child
        if node.left is not None:
            queue.append(node.left)
 
        # Enqueue right child
        if node.right is not None:
            queue.append(node.right)
 
 
# Driver Program to test above function
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
 
print("Level Order Traversal of binary tree is -")
printLevelOrder(root)
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)


C#
// Iterative Queue based C# program
// to do level order traversal
// of Binary Tree
 
using System;
using System.Collections.Generic;
 
/* Class to represent Tree node */
public class Node {
    public int data;
    public Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = null;
        right = null;
    }
}
 
/* Class to print Level Order Traversal */
public class BinaryTree {
 
    Node root;
 
    /* Given a binary tree. Print
    its nodes in level order using
     array for implementing queue */
    void printLevelOrder()
    {
        Queue queue = new Queue();
        queue.Enqueue(root);
        while (queue.Count != 0) {
 
            /* poll() removes the present head.
            For more information on poll() visit
            http://www.tutorialspoint.com/
            java/util/linkedlist_poll.htm */
            Node tempNode = queue.Dequeue();
            Console.Write(tempNode.data + " ");
 
            /*Enqueue left child */
            if (tempNode.left != null) {
                queue.Enqueue(tempNode.left);
            }
 
            /*Enqueue right child */
            if (tempNode.right != null) {
                queue.Enqueue(tempNode.right);
            }
        }
    }
 
    // Driver code
    public static void Main()
    {
        /* creating a binary tree and entering
        the nodes */
        BinaryTree tree_level = new BinaryTree();
        tree_level.root = new Node(1);
        tree_level.root.left = new Node(2);
        tree_level.root.right = new Node(3);
        tree_level.root.left.left = new Node(4);
        tree_level.root.left.right = new Node(5);
 
        Console.WriteLine("Level order traversal "
                          + "of binary tree is - ");
        tree_level.printLevelOrder();
    }
}
 
/* This code contributed by PrinciRaj1992 */


输出
Level Order traversal of binary tree is 
1 2 3 4 5 

时间复杂度:最坏情况下为 O(n^2)。对于倾斜树,printGivenLevel() 花费 O(n) 时间,其中 n 是倾斜树中的节点数。所以 printLevelOrder() 的时间复杂度是 O(n) + O(n-1) + O(n-2) + .. + O(1) 即 O(n^2)。
空间复杂度:最坏情况下为 O(n)。对于倾斜的树,printGivenLevel() 使用 O(n) 空间作为调用堆栈。对于平衡树,调用堆栈使用 O(log n) 空间,(即平衡树的高度)。

方法二(使用队列)

算法:
对于每个节点,首先访问该节点,然后将其子节点放入 FIFO 队列。

printLevelorder(tree)
1) Create an empty queue q
2) temp_node = root /*start from root*/
3) Loop while temp_node is not NULL
    a) print temp_node->data.
    b) Enqueue temp_node’s children 
      (first left then right children) to q
    c) Dequeue a node from q.

执行:
下面是上述算法的简单实现。队列使用最大大小为 500 的数组实现。我们也可以将队列实现为链表。

C++

/* C++ program to print level
    order traversal using STL */
#include 
using namespace std;
 
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Iterative method to find height of Binary Tree
void printLevelOrder(Node* root)
{
    // Base Case
    if (root == NULL)
        return;
 
    // Create an empty queue for level order traversal
    queue q;
 
    // Enqueue Root and initialize height
    q.push(root);
 
    while (q.empty() == false) {
        // Print front of queue and remove it from queue
        Node* node = q.front();
        cout << node->data << " ";
        q.pop();
 
        /* Enqueue left child */
        if (node->left != NULL)
            q.push(node->left);
 
        /*Enqueue right child */
        if (node->right != NULL)
            q.push(node->right);
    }
}
 
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Driver program to test above functions
int main()
{
    // Let us create binary tree shown in above diagram
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    cout << "Level Order traversal of binary tree is \n";
    printLevelOrder(root);
    return 0;
}

C

// Iterative Queue based C program
// to do level order traversal
// of Binary Tree
#include 
#include 
#define MAX_Q_SIZE 500
 
/* A binary tree node has data,
   pointer to left child
   and a pointer to right child */
struct node {
    int data;
    struct node* left;
    struct node* right;
};
 
/* frunction prototypes */
struct node** createQueue(int*, int*);
void enQueue(struct node**, int*, struct node*);
struct node* deQueue(struct node**, int*);
 
/* Given a binary tree, print its nodes in level order
   using array for implementing queue */
void printLevelOrder(struct node* root)
{
    int rear, front;
    struct node** queue = createQueue(&front, &rear);
    struct node* temp_node = root;
 
    while (temp_node) {
        printf("%d ", temp_node->data);
 
        /*Enqueue left child */
        if (temp_node->left)
            enQueue(queue, &rear, temp_node->left);
 
        /*Enqueue right child */
        if (temp_node->right)
            enQueue(queue, &rear, temp_node->right);
 
        /*Dequeue node and make it temp_node*/
        temp_node = deQueue(queue, &front);
    }
}
 
/*UTILITY FUNCTIONS*/
struct node** createQueue(int* front, int* rear)
{
    struct node** queue = (struct node**)malloc(
        sizeof(struct node*) * MAX_Q_SIZE);
 
    *front = *rear = 0;
    return queue;
}
 
void enQueue(struct node** queue, int* rear,
             struct node* new_node)
{
    queue[*rear] = new_node;
    (*rear)++;
}
 
struct node* deQueue(struct node** queue, int* front)
{
    (*front)++;
    return queue[*front - 1];
}
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newNode(int data)
{
    struct node* node
        = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
/* Driver program to test above functions*/
int main()
{
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
 
    printf("Level Order traversal of binary tree is \n");
    printLevelOrder(root);
 
    return 0;
}

Java

// Iterative Queue based Java program
// to do level order traversal
// of Binary Tree
 
/* importing the inbuilt java classes
   required for the program */
import java.util.LinkedList;
import java.util.Queue;
 
/* Class to represent Tree node */
class Node {
    int data;
    Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = null;
        right = null;
    }
}
 
/* Class to print Level Order Traversal */
class BinaryTree {
 
    Node root;
 
    /* Given a binary tree. Print
     its nodes in level order
     using array for implementing queue  */
    void printLevelOrder()
    {
        Queue queue = new LinkedList();
        queue.add(root);
        while (!queue.isEmpty()) {
 
            /* poll() removes the present head.
            For more information on poll() visit
            http://www.tutorialspoint.com/java/
            util/linkedlist_poll.htm */
            Node tempNode = queue.poll();
            System.out.print(tempNode.data + " ");
 
            /*Enqueue left child */
            if (tempNode.left != null) {
                queue.add(tempNode.left);
            }
 
            /*Enqueue right child */
            if (tempNode.right != null) {
                queue.add(tempNode.right);
            }
        }
    }
 
    public static void main(String args[])
    {
        /* creating a binary tree and entering
         the nodes */
        BinaryTree tree_level = new BinaryTree();
        tree_level.root = new Node(1);
        tree_level.root.left = new Node(2);
        tree_level.root.right = new Node(3);
        tree_level.root.left.left = new Node(4);
        tree_level.root.left.right = new Node(5);
 
        System.out.println("Level order traversal
                            of binary tree is - ");
        tree_level.printLevelOrder();
    }
}

蟒蛇3

# Python program to print level
# order traversal using Queue
 
# A node structure
 
 
class Node:
    # A utility function to create a new node
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
 
# Iterative Method to print the
# height of a binary tree
 
 
def printLevelOrder(root):
    # Base Case
    if root is None:
        return
 
    # Create an empty queue
    # for level order traversal
    queue = []
 
    # Enqueue Root and initialize height
    queue.append(root)
 
    while(len(queue) > 0):
 
        # Print front of queue and
        # remove it from queue
        print(queue[0].data)
        node = queue.pop(0)
 
        # Enqueue left child
        if node.left is not None:
            queue.append(node.left)
 
        # Enqueue right child
        if node.right is not None:
            queue.append(node.right)
 
 
# Driver Program to test above function
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
 
print("Level Order Traversal of binary tree is -")
printLevelOrder(root)
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#

// Iterative Queue based C# program
// to do level order traversal
// of Binary Tree
 
using System;
using System.Collections.Generic;
 
/* Class to represent Tree node */
public class Node {
    public int data;
    public Node left, right;
 
    public Node(int item)
    {
        data = item;
        left = null;
        right = null;
    }
}
 
/* Class to print Level Order Traversal */
public class BinaryTree {
 
    Node root;
 
    /* Given a binary tree. Print
    its nodes in level order using
     array for implementing queue */
    void printLevelOrder()
    {
        Queue queue = new Queue();
        queue.Enqueue(root);
        while (queue.Count != 0) {
 
            /* poll() removes the present head.
            For more information on poll() visit
            http://www.tutorialspoint.com/
            java/util/linkedlist_poll.htm */
            Node tempNode = queue.Dequeue();
            Console.Write(tempNode.data + " ");
 
            /*Enqueue left child */
            if (tempNode.left != null) {
                queue.Enqueue(tempNode.left);
            }
 
            /*Enqueue right child */
            if (tempNode.right != null) {
                queue.Enqueue(tempNode.right);
            }
        }
    }
 
    // Driver code
    public static void Main()
    {
        /* creating a binary tree and entering
        the nodes */
        BinaryTree tree_level = new BinaryTree();
        tree_level.root = new Node(1);
        tree_level.root.left = new Node(2);
        tree_level.root.right = new Node(3);
        tree_level.root.left.left = new Node(4);
        tree_level.root.left.right = new Node(5);
 
        Console.WriteLine("Level order traversal "
                          + "of binary tree is - ");
        tree_level.printLevelOrder();
    }
}
 
/* This code contributed by PrinciRaj1992 */
输出
Level Order traversal of binary tree is 
1 2 3 4 5 

时间复杂度: O(n) 其中 n 是二叉树中的节点数
空间复杂度: O(n) 其中 n 是二叉树中的节点数