📜  Python|熊猫 dataframe.mul()

📅  最后修改于: 2022-05-13 01:54:32.459000             🧑  作者: Mango

Python|熊猫 dataframe.mul()

Python是一种用于进行数据分析的出色语言,主要是因为以数据为中心的Python包的奇妙生态系统。 Pandas就是其中之一,它使导入和分析数据变得更加容易。
Pandas dataframe.mul()函数返回数据帧和其他元素的乘法。此函数本质上与数据帧 * other 执行相同的操作,但它提供了额外的支持来处理其中一个输入中的缺失值。

示例 #1:使用 mul()函数查找数据帧与序列的乘积。
注意:对于与系列相乘,用于相乘的数据框轴必须与系列索引相匹配。

Python3
# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df1=pd.DataFrame({"A":[14,4,5,4,1],
                  "B":[5,2,54,3,2],
                  "C":[20,20,7,3,8],
                  "D":[14,3,6,2,6]})
 
# Print the dataframe
df1


Python3
# importing pandas as pd
import pandas as pd
 
# create series
sr = pd.Series([3, 2, 4, 5, 6])
 
# Print series
sr


Python3
# find multiplication over the index axis
df1.mul(sr, axis = 0)


Python3
# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df1=pd.DataFrame({"A":[14,4,5,4,1],
                  "B":[5,2,54,3,2],
                  "C":[20,20,7,3,8],
                  "D":[14,3,6,2,6]})
 
# Creating the second dataframe with Na value
df2=pd.DataFrame({"A":[12,4,5,None,1],
                  "B":[7,2,54,3,None],
                  "C":[20,16,11,3,8],
                  "D":[14,3,None,2,6]})
 
# Print the second dataframe
df2


Python3
# fill the missing values with 100
df1.mul(df2, fill_value = 100)


让我们创建系列

Python3

# importing pandas as pd
import pandas as pd
 
# create series
sr = pd.Series([3, 2, 4, 5, 6])
 
# Print series
sr

让我们使用 dataframe.mul()函数来执行乘法

Python3

# find multiplication over the index axis
df1.mul(sr, axis = 0)

输出 :


示例 #2:使用 mul()函数查找两个数据帧的乘积。一个数据帧包含 NA 值。

Python3

# importing pandas as pd
import pandas as pd
 
# Creating the first dataframe
df1=pd.DataFrame({"A":[14,4,5,4,1],
                  "B":[5,2,54,3,2],
                  "C":[20,20,7,3,8],
                  "D":[14,3,6,2,6]})
 
# Creating the second dataframe with Na value
df2=pd.DataFrame({"A":[12,4,5,None,1],
                  "B":[7,2,54,3,None],
                  "C":[20,16,11,3,8],
                  "D":[14,3,None,2,6]})
 
# Print the second dataframe
df2

让我们使用 dataframe.mul()函数来查找两个数据帧的乘积,同时处理缺失值。

Python3

# fill the missing values with 100
df1.mul(df2, fill_value = 100)

输出 :

请注意,所有缺失值单元格在乘法之前都已填充 100