粒子群优化的实现
上一篇文章粒子群优化-概述谈到了粒子群优化(PSO)的灵感,它是数学建模和算法。在本文中,我们将为两个适应度函数 1) Rastrigin函数2) 球体函数实现粒子群优化 (PSO)。该算法将运行预定义的最大迭代次数,并尝试找到这些适应度函数的最小值。
健身功能
1) 拉斯特里金函数
Rastrigin函数是非凸函数,常被用作优化算法的性能测试问题。
函数方程:
对于优化算法,rastrigin函数是一个非常具有挑战性的函数。它的复杂行为导致优化算法经常停留在局部最小值。在平面上有很多余弦振荡会为该函数引入复杂的行为。
2) 球面函数
球面函数是用于评估优化算法性能的标准函数。
函数方程:
超参数的选择
问题参数:
- 维数 ( d ) = 3
- 下限 ( minx ) = -10.0
- 上限 ( maxx ) = 10.0
算法的超参数:
- 粒子数 ( N ) = 50
- 最大迭代次数 ( max_iter ) = 100
- 惯性系数 ( w ) = 0.729
- 认知系数 ( c1 ) = 1.49445
- 社会系数 ( c2 ) = 1.49445
输入
- 健身函数
- 问题参数(上面提到的)
- 总体大小 ( N ) 和最大迭代次数 ( max_iter )
- 算法特定的超参数( w , c1 , c2 )
伪代码
粒子群优化的伪代码已经在上一篇文章中描述过了。还讨论了用于存储 Swarm 种群的数据结构以及用于存储特定于单个粒子的数据的数据结构。
执行
Python3
# python implementation of particle swarm optimization (PSO)
# minimizing rastrigin and sphere function
import random
import math # cos() for Rastrigin
import copy # array-copying convenience
import sys # max float
#-------fitness functions---------
# rastrigin function
def fitness_rastrigin(position):
fitnessVal = 0.0
for i in range(len(position)):
xi = position[i]
fitnessVal += (xi * xi) - (10 * math.cos(2 * math.pi * xi)) + 10
return fitnessVal
#sphere function
def fitness_sphere(position):
fitnessVal = 0.0
for i in range(len(position)):
xi = position[i]
fitnessVal += (xi*xi);
return fitnessVal;
#-------------------------
#particle class
class Particle:
def __init__(self, fitness, dim, minx, maxx, seed):
self.rnd = random.Random(seed)
# initialize position of the particle with 0.0 value
self.position = [0.0 for i in range(dim)]
# initialize velocity of the particle with 0.0 value
self.velocity = [0.0 for i in range(dim)]
# initialize best particle position of the particle with 0.0 value
self.best_part_pos = [0.0 for i in range(dim)]
# loop dim times to calculate random position and velocity
# range of position and velocity is [minx, max]
for i in range(dim):
self.position[i] = ((maxx - minx) *
self.rnd.random() + minx)
self.velocity[i] = ((maxx - minx) *
self.rnd.random() + minx)
# compute fitness of particle
self.fitness = fitness(self.position) # curr fitness
# initialize best position and fitness of this particle
self.best_part_pos = copy.copy(self.position)
self.best_part_fitnessVal = self.fitness # best fitness
# particle swarm optimization function
def pso(fitness, max_iter, n, dim, minx, maxx):
# hyper parameters
w = 0.729 # inertia
c1 = 1.49445 # cognitive (particle)
c2 = 1.49445 # social (swarm)
rnd = random.Random(0)
# create n random particles
swarm = [Particle(fitness, dim, minx, maxx, i) for i in range(n)]
# compute the value of best_position and best_fitness in swarm
best_swarm_pos = [0.0 for i in range(dim)]
best_swarm_fitnessVal = sys.float_info.max # swarm best
# computer best particle of swarm and it's fitness
for i in range(n): # check each particle
if swarm[i].fitness < best_swarm_fitnessVal:
best_swarm_fitnessVal = swarm[i].fitness
best_swarm_pos = copy.copy(swarm[i].position)
# main loop of pso
Iter = 0
while Iter < max_iter:
# after every 10 iterations
# print iteration number and best fitness value so far
if Iter % 10 == 0 and Iter > 1:
print("Iter = " + str(Iter) + " best fitness = %.3f" % best_swarm_fitnessVal)
for i in range(n): # process each particle
# compute new velocity of curr particle
for k in range(dim):
r1 = rnd.random() # randomizations
r2 = rnd.random()
swarm[i].velocity[k] = (
(w * swarm[i].velocity[k]) +
(c1 * r1 * (swarm[i].best_part_pos[k] - swarm[i].position[k])) +
(c2 * r2 * (best_swarm_pos[k] -swarm[i].position[k]))
)
# if velocity[k] is not in [minx, max]
# then clip it
if swarm[i].velocity[k] < minx:
swarm[i].velocity[k] = minx
elif swarm[i].velocity[k] > maxx:
swarm[i].velocity[k] = maxx
# compute new position using new velocity
for k in range(dim):
swarm[i].position[k] += swarm[i].velocity[k]
# compute fitness of new position
swarm[i].fitness = fitness(swarm[i].position)
# is new position a new best for the particle?
if swarm[i].fitness < swarm[i].best_part_fitnessVal:
swarm[i].best_part_fitnessVal = swarm[i].fitness
swarm[i].best_part_pos = copy.copy(swarm[i].position)
# is new position a new best overall?
if swarm[i].fitness < best_swarm_fitnessVal:
best_swarm_fitnessVal = swarm[i].fitness
best_swarm_pos = copy.copy(swarm[i].position)
# for-each particle
Iter += 1
#end_while
return best_swarm_pos
# end pso
#----------------------------
# Driver code for rastrigin function
print("\nBegin particle swarm optimization on rastrigin function\n")
dim = 3
fitness = fitness_rastrigin
print("Goal is to minimize Rastrigin's function in " + str(dim) + " variables")
print("Function has known min = 0.0 at (", end="")
for i in range(dim-1):
print("0, ", end="")
print("0)")
num_particles = 50
max_iter = 100
print("Setting num_particles = " + str(num_particles))
print("Setting max_iter = " + str(max_iter))
print("\nStarting PSO algorithm\n")
best_position = pso(fitness, max_iter, num_particles, dim, -10.0, 10.0)
print("\nPSO completed\n")
print("\nBest solution found:")
print(["%.6f"%best_position[k] for k in range(dim)])
fitnessVal = fitness(best_position)
print("fitness of best solution = %.6f" % fitnessVal)
print("\nEnd particle swarm for rastrigin function\n")
print()
print()
# Driver code for Sphere function
print("\nBegin particle swarm optimization on sphere function\n")
dim = 3
fitness = fitness_sphere
print("Goal is to minimize sphere function in " + str(dim) + " variables")
print("Function has known min = 0.0 at (", end="")
for i in range(dim-1):
print("0, ", end="")
print("0)")
num_particles = 50
max_iter = 100
print("Setting num_particles = " + str(num_particles))
print("Setting max_iter = " + str(max_iter))
print("\nStarting PSO algorithm\n")
best_position = pso(fitness, max_iter, num_particles, dim, -10.0, 10.0)
print("\nPSO completed\n")
print("\nBest solution found:")
print(["%.6f"%best_position[k] for k in range(dim)])
fitnessVal = fitness(best_position)
print("fitness of best solution = %.6f" % fitnessVal)
print("\nEnd particle swarm for sphere function\n")
输出:
Begin particle swarm optimization on rastrigin function
Goal is to minimize Rastrigin's function in 3 variables
Function has known min = 0.0 at (0, 0, 0)
Setting num_particles = 50
Setting max_iter = 100
Starting PSO algorithm
Iter = 10 best fitness = 8.463
Iter = 20 best fitness = 4.792
Iter = 30 best fitness = 2.223
Iter = 40 best fitness = 0.251
Iter = 50 best fitness = 0.251
Iter = 60 best fitness = 0.061
Iter = 70 best fitness = 0.007
Iter = 80 best fitness = 0.005
Iter = 90 best fitness = 0.000
PSO completed
Best solution found:
['0.000618', '0.000013', '0.000616']
fitness of best solution = 0.000151
End particle swarm for rastrigin function
Begin particle swarm optimization on sphere function
Goal is to minimize sphere function in 3 variables
Function has known min = 0.0 at (0, 0, 0)
Setting num_particles = 50
Setting max_iter = 100
Starting PSO algorithm
Iter = 10 best fitness = 0.189
Iter = 20 best fitness = 0.012
Iter = 30 best fitness = 0.001
Iter = 40 best fitness = 0.000
Iter = 50 best fitness = 0.000
Iter = 60 best fitness = 0.000
Iter = 70 best fitness = 0.000
Iter = 80 best fitness = 0.000
Iter = 90 best fitness = 0.000
PSO completed
Best solution found:
['0.000004', '-0.000001', '0.000007']
fitness of best solution = 0.000000
End particle swarm for sphere function
参考
研究论文引用: Kennedy, J. 和 Eberhart, R.,1995 年,11 月。粒子群优化。在 ICNN'95 国际神经网络会议论文集(第 4 卷,第 1942-1948 页)中。 IEEE。
实施灵感: https : //fr.mathworks.com/matlabcentral/fileexchange/67429-a-simple-implementation-of-particle-swarm-optimization-pso-algorithm