📌  相关文章
📜  以最小的成本连接n条绳索

📅  最后修改于: 2021-05-04 08:00:52             🧑  作者: Mango

有n条不同长度的绳索,我们需要将这些绳索连接成一条绳索。连接两条绳索的成本等于其长度之和。我们需要以最小的成本连接绳索。
例如,如果给我们4条长度分别为4、3、2和6的绳索,我们可以通过以下方式进行连接。
1)首先,连接长度为2和3的绳索。现在,我们有了三根长度为4、6和5的绳索。
2)现在连接长度为4和5的绳索。现在有两条长度为6和9的绳索。
3)最后连接两条绳索,所有绳索均已连接。
连接所有绳索的总成本为5 + 9 + 15 =29。这是连接绳索的最佳成本。连接绳索的其他方式将始终具有相同或更多的成本。例如,如果我们首先连接4和6(我们得到三个字符串,分别为3、2和10),然后连接10和3(我们得到两个字符串,分别为13和2)。最后,我们将13和2连接起来。这种方式的总成本为10 + 13 + 15 = 38。

我们强烈建议您单击此处并进行实践,然后再继续解决方案。

解决方案:
如果我们仔细观察上述问题,我们会注意到,首先被挑选的绳索的长度被计入总成本中不止一次。因此,我们的想法是先连接最小的两根绳索,然后再重复剩余的绳索。这种方法类似于霍夫曼编码。我们将最小的绳索放在树上,这样它们可以重复多次而不是更长的绳索。
因此,它形成了像树一样的结构:

该和包含每个值的深度之和。对于数组(2、3、4、6),总和等于2 * 3 + 3 * 3 + 4 * 2 + 6 * 1 = 29(根据该图)。
算法:

  1. 创建一个最小堆并将所有长度插入到最小堆中。
  2. 当min-heap中的元素数不为1时,请执行以下操作。
    1. 从最小堆中提取最小值和第二最小值
    2. 将以上两个提取的值相加,然后将相加后的值插入到最小堆中。
    3. 维持总成本的变量,并按提取值的总和不断增加变量。
  3. 返回此总成本的值。

以下是上述算法的实现。

C++
// C++ program for connecting
// n ropes with minimum cost
#include 
 
using namespace std;
 
// A Min Heap: Collection of min heap nodes
struct MinHeap {
    unsigned size; // Current size of min heap
    unsigned capacity; // capacity of min heap
    int* harr; // Attay of minheap nodes
};
 
// A utility function to create
// a min-heap of a given capacity
struct MinHeap* createMinHeap(unsigned capacity)
{
    struct MinHeap* minHeap = new MinHeap;
    minHeap->size = 0; // current size is 0
    minHeap->capacity = capacity;
    minHeap->harr = new int[capacity];
    return minHeap;
}
 
// A utility function to swap two min heap nodes
void swapMinHeapNode(int* a, int* b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
 
// The standard minHeapify function.
void minHeapify(struct MinHeap* minHeap, int idx)
{
    int smallest = idx;
    int left = 2 * idx + 1;
    int right = 2 * idx + 2;
 
    if (left < minHeap->size
        && minHeap->harr[left] < minHeap->harr[smallest])
        smallest = left;
 
    if (right < minHeap->size
        && minHeap->harr[right] < minHeap->harr[smallest])
        smallest = right;
 
    if (smallest != idx) {
        swapMinHeapNode(&minHeap->harr[smallest], &minHeap->harr[idx]);
        minHeapify(minHeap, smallest);
    }
}
 
// A utility function to check
// if size of heap is 1 or not
int isSizeOne(struct MinHeap* minHeap)
{
    return (minHeap->size == 1);
}
 
// A standard function to extract
// minimum value node from heap
int extractMin(struct MinHeap* minHeap)
{
    int temp = minHeap->harr[0];
    minHeap->harr[0] = minHeap->harr[minHeap->size - 1];
    --minHeap->size;
    minHeapify(minHeap, 0);
    return temp;
}
 
// A utility function to insert
// a new node to Min Heap
void insertMinHeap(struct MinHeap* minHeap, int val)
{
    ++minHeap->size;
    int i = minHeap->size - 1;
    while (i && (val < minHeap->harr[(i - 1) / 2])) {
        minHeap->harr[i] = minHeap->harr[(i - 1) / 2];
        i = (i - 1) / 2;
    }
    minHeap->harr[i] = val;
}
 
// A standard function to build min-heap
void buildMinHeap(struct MinHeap* minHeap)
{
    int n = minHeap->size - 1;
    int i;
    for (i = (n - 1) / 2; i >= 0; --i)
        minHeapify(minHeap, i);
}
 
// Creates a min-heap of capacity
// equal to size and inserts all values
// from len[] in it. Initially, size
// of min heap is equal to capacity
struct MinHeap* createAndBuildMinHeap(
    int len[], int size)
{
    struct MinHeap* minHeap = createMinHeap(size);
    for (int i = 0; i < size; ++i)
        minHeap->harr[i] = len[i];
    minHeap->size = size;
    buildMinHeap(minHeap);
    return minHeap;
}
 
// The main function that returns
// the minimum cost to connect n
// ropes of lengths stored in len[0..n-1]
int minCost(int len[], int n)
{
    int cost = 0; // Initialize result
 
    // Create a min heap of capacity
    // equal to n and put all ropes in it
    struct MinHeap* minHeap = createAndBuildMinHeap(len, n);
 
    // Iterate while size of heap doesn't become 1
    while (!isSizeOne(minHeap)) {
        // Extract two minimum length
        // ropes from min heap
        int min = extractMin(minHeap);
        int sec_min = extractMin(minHeap);
 
        cost += (min + sec_min); // Update total cost
 
        // Insert a new rope in min heap
        // with length equal to sum
        // of two extracted minimum lengths
        insertMinHeap(minHeap, min + sec_min);
    }
 
    // Finally return total minimum
    // cost for connecting all ropes
    return cost;
}
 
// Driver program to test above functions
int main()
{
    int len[] = { 4, 3, 2, 6 };
    int size = sizeof(len) / sizeof(len[0]);
    cout << "Total cost for connecting ropes is "
         << minCost(len, size);
    return 0;
}


Java
// Java program to connect n
// ropes with minimum cost
 
// A class for Min Heap
class MinHeap {
    int[] harr; // Array of elements in heap
    int heap_size; // Current number of elements in min heap
    int capacity; // maximum possible size of min heap
 
    // Constructor: Builds a heap from
    // a given array a[] of given size
    public MinHeap(int a[], int size)
    {
        heap_size = size;
        capacity = size;
        harr = a;
        int i = (heap_size - 1) / 2;
        while (i >= 0) {
            MinHeapify(i);
            i--;
        }
    }
 
    // A recursive method to heapify a subtree
    // with the root at given index
    // This method assumes that the subtrees
    // are already heapified
    void MinHeapify(int i)
    {
        int l = left(i);
        int r = right(i);
        int smallest = i;
        if (l < heap_size && harr[l] < harr[i])
            smallest = l;
        if (r < heap_size && harr[r] < harr[smallest])
            smallest = r;
        if (smallest != i) {
            swap(i, smallest);
            MinHeapify(smallest);
        }
    }
 
    int parent(int i) { return (i - 1) / 2; }
 
    // to get index of left child of node at index i
    int left(int i) { return (2 * i + 1); }
 
    // to get index of right child of node at index i
    int right(int i) { return (2 * i + 2); }
 
    // Method to remove minimum element (or root) from min heap
    int extractMin()
    {
        if (heap_size <= 0)
            return Integer.MAX_VALUE;
        if (heap_size == 1) {
            heap_size--;
            return harr[0];
        }
 
        // Store the minimum value, and remove it from heap
        int root = harr[0];
        harr[0] = harr[heap_size - 1];
        heap_size--;
        MinHeapify(0);
 
        return root;
    }
 
    // Inserts a new key 'k'
    void insertKey(int k)
    {
        if (heap_size == capacity) {
            System.out.println("Overflow: Could not insertKey");
            return;
        }
 
        // First insert the new key at the end
        heap_size++;
        int i = heap_size - 1;
        harr[i] = k;
 
        // Fix the min heap property if it is violated
        while (i != 0 && harr[parent(i)] > harr[i]) {
            swap(i, parent(i));
            i = parent(i);
        }
    }
 
    // A utility function to check
    // if size of heap is 1 or not
    boolean isSizeOne()
    {
        return (heap_size == 1);
    }
 
    // A utility function to swap two elements
    void swap(int x, int y)
    {
        int temp = harr[x];
        harr[x] = harr[y];
        harr[y] = temp;
    }
 
    // The main function that returns the
    // minimum cost to connect n ropes of
    // lengths stored in len[0..n-1]
    static int minCost(int len[], int n)
    {
        int cost = 0; // Initialize result
 
        // Create a min heap of capacity equal
        // to n and put all ropes in it
        MinHeap minHeap = new MinHeap(len, n);
 
        // Iterate while size of heap doesn't become 1
        while (!minHeap.isSizeOne()) {
            // Extract two minimum length ropes from min heap
            int min = minHeap.extractMin();
            int sec_min = minHeap.extractMin();
 
            cost += (min + sec_min); // Update total cost
 
            // Insert a new rope in min heap with length equal to sum
            // of two extracted minimum lengths
            minHeap.insertKey(min + sec_min);
        }
 
        // Finally return total minimum
        // cost for connecting all ropes
        return cost;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int len[] = { 4, 3, 2, 6 };
        int size = len.length;
 
        System.out.println("Total cost for connecting ropes is " + minCost(len, size));
    }
};
 
// This code is contributed by shubham96301


C#
// C# program to connect n ropes with minimum cost
using System;
 
// A class for Min Heap
class MinHeap {
    int[] harr; // Array of elements in heap
    int heap_size; // Current number of elements in min heap
    int capacity; // maximum possible size of min heap
 
    // Constructor: Builds a heap from
    // a given array a[] of given size
    public MinHeap(int[] a, int size)
    {
        heap_size = size;
        capacity = size;
        harr = a;
        int i = (heap_size - 1) / 2;
        while (i >= 0) {
            MinHeapify(i);
            i--;
        }
    }
 
    // A recursive method to heapify a subtree
    // with the root at given index
    // This method assumes that the subtrees
    // are already heapified
    void MinHeapify(int i)
    {
        int l = left(i);
        int r = right(i);
        int smallest = i;
        if (l < heap_size && harr[l] < harr[i])
            smallest = l;
        if (r < heap_size && harr[r] < harr[smallest])
            smallest = r;
        if (smallest != i) {
            swap(i, smallest);
            MinHeapify(smallest);
        }
    }
 
    int parent(int i) { return (i - 1) / 2; }
 
    // to get index of left child of node at index i
    int left(int i) { return (2 * i + 1); }
 
    // to get index of right child of node at index i
    int right(int i) { return (2 * i + 2); }
 
    // Method to remove minimum element (or root) from min heap
    int extractMin()
    {
        if (heap_size <= 0)
            return int.MaxValue;
        if (heap_size == 1) {
            heap_size--;
            return harr[0];
        }
 
        // Store the minimum value, and remove it from heap
        int root = harr[0];
        harr[0] = harr[heap_size - 1];
        heap_size--;
        MinHeapify(0);
 
        return root;
    }
 
    // Inserts a new key 'k'
    void insertKey(int k)
    {
        if (heap_size == capacity) {
            Console.WriteLine("Overflow: Could not insertKey");
            return;
        }
 
        // First insert the new key at the end
        heap_size++;
        int i = heap_size - 1;
        harr[i] = k;
 
        // Fix the min heap property if it is violated
        while (i != 0 && harr[parent(i)] > harr[i]) {
            swap(i, parent(i));
            i = parent(i);
        }
    }
 
    // A utility function to check
    // if size of heap is 1 or not
    Boolean isSizeOne()
    {
        return (heap_size == 1);
    }
 
    // A utility function to swap two elements
    void swap(int x, int y)
    {
        int temp = harr[x];
        harr[x] = harr[y];
        harr[y] = temp;
    }
 
    // The main function that returns the
    // minimum cost to connect n ropes of
    // lengths stored in len[0..n-1]
    static int minCost(int[] len, int n)
    {
        int cost = 0; // Initialize result
 
        // Create a min heap of capacity equal
        // to n and put all ropes in it
        MinHeap minHeap = new MinHeap(len, n);
 
        // Iterate while size of heap doesn't become 1
        while (!minHeap.isSizeOne()) {
            // Extract two minimum length ropes from min heap
            int min = minHeap.extractMin();
            int sec_min = minHeap.extractMin();
 
            cost += (min + sec_min); // Update total cost
 
            // Insert a new rope in min heap with length equal to sum
            // of two extracted minimum lengths
            minHeap.insertKey(min + sec_min);
        }
 
        // Finally return total minimum
        // cost for connecting all ropes
        return cost;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] len = { 4, 3, 2, 6 };
        int size = len.Length;
 
        Console.WriteLine("Total cost for connecting ropes is " + minCost(len, size));
    }
};
 
// This code is contributed by Arnab Kundu


C++
#include 
 
using namespace std;
 
int minCost(int arr[], int n)
{
    // Create a priority queue
    // https:// www.geeksforgeeks.org/priority-queue-in-cpp-stl/
    // By default 'less' is used which is for decreasing order
    // and 'greater' is used for increasing order
    priority_queue, greater > pq(arr, arr + n);
 
    // Initialize result
    int res = 0;
 
    // While size of priority queue is more than 1
    while (pq.size() > 1) {
        // Extract shortest two ropes from pq
        int first = pq.top();
        pq.pop();
        int second = pq.top();
        pq.pop();
 
        // Connect the ropes: update result and
        // insert the new rope to pq
        res += first + second;
        pq.push(first + second);
    }
 
    return res;
}
 
// Driver program to test above function
int main()
{
    int len[] = { 4, 3, 2, 6 };
    int size = sizeof(len) / sizeof(len[0]);
    cout << "Total cost for connecting ropes is " << minCost(len, size);
    return 0;
}


Java
// Java program to connect n
// ropes with minimum cost
import java.util.*;
 
class ConnectRopes {
    static int minCost(int arr[], int n)
    {
        // Create a priority queue
        PriorityQueue pq = new PriorityQueue();
 
        // Adding items to the pQueue
        for (int i = 0; i < n; i++) {
            pq.add(arr[i]);
        }
 
        // Initialize result
        int res = 0;
 
        // While size of priority queue
        // is more than 1
        while (pq.size() > 1) {
            // Extract shortest two ropes from pq
            int first = pq.poll();
            int second = pq.poll();
 
            // Connect the ropes: update result
            // and insert the new rope to pq
            res += first + second;
            pq.add(first + second);
        }
 
        return res;
    }
 
    // Driver program to test above function
    public static void main(String args[])
    {
        int len[] = { 4, 3, 2, 6 };
        int size = len.length;
        System.out.println("Total cost for connecting"
                           + " ropes is " + minCost(len, size));
    }
}
// This code is contributed by yash_pec


Python3
# Python3 program to connect n
# ropes with minimum cost
import heapq
 
def minCost(arr, n):
     
    # Create a priority queue out of the
    # given list
    heapq.heapify(arr)
     
    # Initializ result
    res = 0
     
    # While size of priority queue
    # is more than 1
    while(len(arr) > 1):
         
        # Extract shortest two ropes from arr
        first = heapq.heappop(arr)
        second = heapq.heappop(arr)
         
        #Connect the ropes: update result
        # and insert the new rope to arr
        res += first + second
        heapq.heappush(arr, first + second)
         
    return res
 
# Driver code
if __name__ == '__main__':
     
    lengths = [ 4, 3, 2, 6 ]
    size = len(lengths)
     
    print("Total cost for connecting ropes is " +
          str(minCost(lengths, size)))
 
# This code is contributed by shivampatel5


C#
// C# program to connect n
// ropes with minimum cost
using System;
using System.Collections.Generic;
public class ConnectRopes
{
  static int minCost(int []arr, int n)
  {
    // Create a priority queue
    List pq = new List();
 
    // Adding items to the pQueue
    for (int i = 0; i < n; i++)
    {
      pq.Add(arr[i]);
    }
 
    // Initialize result
    int res = 0;
 
    // While size of priority queue
    // is more than 1
    while (pq.Count > 1)
    {
      pq.Sort();
 
      // Extract shortest two ropes from pq
      int first = pq[0];
      int second = pq[1];
      pq.RemoveRange(0, 2);
 
      // Connect the ropes: update result
      // and insert the new rope to pq
      res += first + second;
      pq.Add(first + second);
    }
    return res;
  }
 
  // Driver program to test above function
  public static void Main(String []args)
  {
    int []len = { 4, 3, 2, 6 };
    int size = len.Length;
    Console.WriteLine("Total cost for connecting"
                      + " ropes is " + minCost(len, size));
  }
}
 
// This code is contributed by Rajput-Ji


输出:

Total cost for connecting ropes is 29

复杂度分析:

  • 时间复杂度: O(nLogn),假设我们使用O(nLogn)排序算法。请注意,诸如插入和提取之类的堆操作需要O(Logn)时间。
  • 辅助复杂度: O(n),将值存储在最小堆中所需的空间

算法范式:贪婪算法
在C++中使用STL的简单实现
这使用STL中可用的priority_queue。感谢Pango89提供以下代码。方法和算法保持不变。最小堆将替换为优先级队列。

C++

#include 
 
using namespace std;
 
int minCost(int arr[], int n)
{
    // Create a priority queue
    // https:// www.geeksforgeeks.org/priority-queue-in-cpp-stl/
    // By default 'less' is used which is for decreasing order
    // and 'greater' is used for increasing order
    priority_queue, greater > pq(arr, arr + n);
 
    // Initialize result
    int res = 0;
 
    // While size of priority queue is more than 1
    while (pq.size() > 1) {
        // Extract shortest two ropes from pq
        int first = pq.top();
        pq.pop();
        int second = pq.top();
        pq.pop();
 
        // Connect the ropes: update result and
        // insert the new rope to pq
        res += first + second;
        pq.push(first + second);
    }
 
    return res;
}
 
// Driver program to test above function
int main()
{
    int len[] = { 4, 3, 2, 6 };
    int size = sizeof(len) / sizeof(len[0]);
    cout << "Total cost for connecting ropes is " << minCost(len, size);
    return 0;
}

Java

// Java program to connect n
// ropes with minimum cost
import java.util.*;
 
class ConnectRopes {
    static int minCost(int arr[], int n)
    {
        // Create a priority queue
        PriorityQueue pq = new PriorityQueue();
 
        // Adding items to the pQueue
        for (int i = 0; i < n; i++) {
            pq.add(arr[i]);
        }
 
        // Initialize result
        int res = 0;
 
        // While size of priority queue
        // is more than 1
        while (pq.size() > 1) {
            // Extract shortest two ropes from pq
            int first = pq.poll();
            int second = pq.poll();
 
            // Connect the ropes: update result
            // and insert the new rope to pq
            res += first + second;
            pq.add(first + second);
        }
 
        return res;
    }
 
    // Driver program to test above function
    public static void main(String args[])
    {
        int len[] = { 4, 3, 2, 6 };
        int size = len.length;
        System.out.println("Total cost for connecting"
                           + " ropes is " + minCost(len, size));
    }
}
// This code is contributed by yash_pec

Python3

# Python3 program to connect n
# ropes with minimum cost
import heapq
 
def minCost(arr, n):
     
    # Create a priority queue out of the
    # given list
    heapq.heapify(arr)
     
    # Initializ result
    res = 0
     
    # While size of priority queue
    # is more than 1
    while(len(arr) > 1):
         
        # Extract shortest two ropes from arr
        first = heapq.heappop(arr)
        second = heapq.heappop(arr)
         
        #Connect the ropes: update result
        # and insert the new rope to arr
        res += first + second
        heapq.heappush(arr, first + second)
         
    return res
 
# Driver code
if __name__ == '__main__':
     
    lengths = [ 4, 3, 2, 6 ]
    size = len(lengths)
     
    print("Total cost for connecting ropes is " +
          str(minCost(lengths, size)))
 
# This code is contributed by shivampatel5

C#

// C# program to connect n
// ropes with minimum cost
using System;
using System.Collections.Generic;
public class ConnectRopes
{
  static int minCost(int []arr, int n)
  {
    // Create a priority queue
    List pq = new List();
 
    // Adding items to the pQueue
    for (int i = 0; i < n; i++)
    {
      pq.Add(arr[i]);
    }
 
    // Initialize result
    int res = 0;
 
    // While size of priority queue
    // is more than 1
    while (pq.Count > 1)
    {
      pq.Sort();
 
      // Extract shortest two ropes from pq
      int first = pq[0];
      int second = pq[1];
      pq.RemoveRange(0, 2);
 
      // Connect the ropes: update result
      // and insert the new rope to pq
      res += first + second;
      pq.Add(first + second);
    }
    return res;
  }
 
  // Driver program to test above function
  public static void Main(String []args)
  {
    int []len = { 4, 3, 2, 6 };
    int size = len.Length;
    Console.WriteLine("Total cost for connecting"
                      + " ropes is " + minCost(len, size));
  }
}
 
// This code is contributed by Rajput-Ji

输出:

Total cost for connecting ropes is 29

复杂度分析:

  • 时间复杂度: O(nLogn),假设我们使用O(nLogn)排序算法。
    请注意,诸如插入和提取之类的堆操作需要O(Logn)时间。
  • 辅助复杂度: O(n)。
    在最小堆中存储值所需的空间