sciPy stats.tsem()函数| Python
scipy.stats.tsem(array, limits=None, inclusive=(True, True))
计算沿数组指定轴的数组元素平均值的修剪标准误差。
它的公式:-
Parameters :
array: Input array or object having the elements to calculate the trimmed standard error of the mean.
axis: Axis along which the trimmed standard error of the mean is to be computed. By default axis = 0.
limits: Lower and upper bound of the array to consider, values less than the lower limit or greater than the upper limit will be ignored. If limits is None [default], then all values are used.
Returns : Trimmed standard error of the mean of array elements based on the set parameters.
代码#1:
# Trimmed Standard error
from scipy import stats
import numpy as np
# array elements ranging from 0 to 19
x = np.arange(20)
print("Trimmed Standard error :", stats.tsem(x))
print("\nTrimmed Standard error by setting limit : ",
stats.tsem(x, (2, 10)))
输出:
Trimmed Standard error : 1.32287565553
Trimmed Standard error by setting limit : 0.912870929175
代码 #2:使用多维数据,axis() 工作
# Trimmed Standard error
from scipy import stats
import numpy as np
arr1 = [[1, 3, 27],
[5, 3, 18],
[17, 16, 333],
[3, 6, 82]]
# using axis = 0
print("\nTrimmed Standard error is with default axis = 0 : \n",
stats.tsem(arr1, axis = 1))
输出:
Trimmed Standard error is with default axis = 0 :
27.1476974115