📅  最后修改于: 2023-12-03 14:56:42.127000             🧑  作者: Mango
策略强化学习是一种通过交互式学习来学习如何最大化某种奖励函数的算法。在策略强化学习中,一个智能体(agent)接收到环境的状态(state),并且通过选择对应的动作(action)来影响环境,从而得到一个回报(reward)。智能体的目标是通过试错来学习一个最佳策略(policy),使得长期的累计回报最大化。
策略梯度算法是目前应用最为广泛的策略强化学习算法之一。其主要思想是通过梯度上升来更新策略参数,使得当前策略的期望回报最大化。以下是一个简单的策略梯度算法的伪代码:
# Initialize policy parameters
theta = random()
# Loop over a number of episodes
for episode in range(num_episodes):
# Initialize episode data
states = []
actions = []
rewards = []
# Interact with environment
state = env.reset()
done = False
while not done:
# Select action according to current policy
action = policy(state, theta)
# Take action and observe new state and reward
next_state, reward, done, _ = env.step(action)
# Record experience
states.append(state)
actions.append(action)
rewards.append(reward)
# Update state
state = next_state
# Compute return
G = 0
returns = []
for reward in rewards[::-1]:
G = gamma * G + reward
returns.insert(0, G)
# Update policy parameters
for t in range(len(states)):
gradient = compute_gradient(states[t], actions[t], theta)
theta += alpha * gradient * returns[t]
其中,policy
函数根据当前策略参数 theta
和给定的状态来选择一个动作,alpha
是学习率,gamma
是折扣因子,compute_gradient
函数用来计算策略在给定状态和动作下的梯度。
Q-Learning算法是另一种经典的强化学习算法,其主要思想是通过学习一个价值函数来决定当前应该选择哪个动作。以下是一个简单的Q-Learning算法的伪代码:
# Initialize Q table
Q = np.zeros([num_states, num_actions])
# Loop over a number of episodes
for episode in range(num_episodes):
# Initialize episode data
state = env.reset()
done = False
while not done:
# Select action according to current Q values
if np.random.rand() < epsilon:
action = env.action_space.sample()
else:
action = np.argmax(Q[state])
# Take action and observe new state and reward
next_state, reward, done, _ = env.step(action)
# Update Q values
Q[state, action] += alpha * (reward + gamma * np.max(Q[next_state]) - Q[state, action])
# Update state
state = next_state
其中,Q
表示状态-动作对的价值函数表格,epsilon
是探索率,alpha
是学习率,gamma
是折扣因子。在选择动作时,如果随机数小于 epsilon
,则随机选择一个动作,否则选择当前 Q 值最大的动作。
策略强化学习和Q-Learning算法是两种常用的强化学习算法,它们可以用来解决很多现实世界的问题。在实践中,通常需要根据具体情况选择最适合的算法,并进行合理的参数调优。