📅  最后修改于: 2023-12-03 15:35:33.838000             🧑  作者: Mango
Van Emde Boas树(VEB树)是一种非常高效的数据结构,主要用于支持动态集合最小值、最大值、后继和前驱等操作,其时间复杂度为$O(\log\log U)$,其中$U$是能表示的整数的范围。在本文中,我们将介绍VEB树的基础概念和建设方法,并提供相应的Python实现。
先简单介绍一下VEB树的基础概念。
Van Emde Boas树是一种数据结构,可以处理$w$位二进制整数的集合,其中$w$是一个正整数。VEB树支持下列操作:
VEB树有以下属性:
接下来,我们将介绍如何建设VEB树。
VEB树的建设是递归进行的。
对于VEB树中的最小元素和最大元素,我们可以直接利用数组实现。
对于VEB树中的summary和cluster,我们需要递归建设。
总体思路如下:
根据上述定义和属性,我们可以不难得到VEB树的代码骨架。
在递归建设VEB树的过程中,我们首先需要确定当前VEB树的二进制位数$w$,以及维护VEB树的两个属性$summary$和$cluster$。
如果当前$w=1$,说明VEB树只包含一个元素,我们可以直接初始化一个$[False, False]$的数组表示该元素是否存在。
如果当前$w>1$,说明VEB树包含多个元素,我们需要递归建设$2^{\lfloor w/2\rfloor}$个包含$2^{\lfloor w/2\rfloor}$个元素的子树,并将它们作为cluster维护。
我们需要建立一个summary,用于维护每个$2^{\lfloor w/2\rfloor}$个元素的子树的最小元素。由于summary也是VEB树,我们可以递归调用build函数来建设。
最后,我们将当前VEB树的最大和最小元素,以及summary和cluster,存储在当前VEB树实例的成员变量中。
下面是Python实现,返回的代码片段按markdown标明:
import math
class VEBTree:
def __init__(self, w):
"""
Initialize your data structure here.
:type w: int
"""
self.w = w
self.min_value = None
self.max_value = None
self.summary = None
self.cluster = None
if self.w > 1:
upper_sqrt_w = int(math.ceil(math.sqrt(self.w)))
lower_sqrt_w = int(math.floor(math.sqrt(self.w)))
self.summary = VEBTree(lower_sqrt_w)
self.cluster = []
for i in range(upper_sqrt_w):
self.cluster.append(VEBTree(lower_sqrt_w))
elif self.w == 1:
self.min_value = None
self.max_value = None
def high(self, x):
"""
Get the high-order bits of x.
:type x: int
:rtype: int
"""
return x // int(math.sqrt(self.w))
def low(self, x):
"""
Get the low-order bits of x.
:type x: int
:rtype: int
"""
return x % int(math.sqrt(self.w))
def index(self, i, j):
"""
Get the index of (i, j).
:type i: int
:type j: int
:rtype: int
"""
return i * int(math.sqrt(self.w)) + j
def veb_insert(self, x):
"""
Insert x into the VEB tree.
:type x: int
:rtype: None
"""
if self.min_value is None:
self.min_value = x
self.max_value = x
else:
if x < self.min_value:
tmp_min_value = self.min_value
self.min_value = x
x = tmp_min_value
if self.w > 1:
if self.cluster[self.high(x)].min_value is None:
self.summary.veb_insert(self.high(x))
self.cluster[self.high(x)].min_value = self.low(x)
self.cluster[self.high(x)].max_value = self.low(x)
else:
self.cluster[self.high(x)].veb_insert(self.low(x))
if x > self.max_value:
self.max_value = x
def veb_delete(self, x):
"""
Remove x from the VEB tree.
:type x: int
:rtype: None
"""
if self.min_value == self.max_value:
self.min_value = None
self.max_value = None
elif self.w == 1:
if x == 0:
self.min_value = 1
else:
self.min_value = 0
self.max_value = self.min_value
else:
if x == self.min_value:
tmp_min_value = self.cluster[self.summary.min_value()].min_value
x = self.index(self.summary.min_value(), tmp_min_value)
self.min_value = x
self.cluster[self.high(x)].veb_delete(self.low(x))
if self.cluster[self.high(x)].min_value is None:
self.summary.veb_delete(self.high(x))
if x == self.max_value:
summary_max = self.summary.max_value
if summary_max is None:
self.max_value = self.min_value
else:
self.max_value = self.index(summary_max, self.cluster[summary_max].max_value)
elif x == self.max_value:
self.max_value = self.index(self.high(x), self.cluster[self.high(x)].max_value)
def veb_member(self, x):
"""
Check if x is in the VEB tree.
:type x: int
:rtype: bool
"""
if x == self.min_value or x == self.max_value:
return True
elif self.w == 1:
return False
else:
return self.cluster[self.high(x)].veb_member(self.low(x))
def veb_minimum(self):
"""
Get the minimum value in the VEB tree.
:rtype: int
"""
return self.min_value
def veb_maximum(self):
"""
Get the maximum value in the VEB tree.
:rtype: int
"""
return self.max_value
def veb_successor(self, x):
"""
Get the smallest value in the VEB tree which is greater than x.
:type x: int
:rtype: int
"""
if self.w == 1:
if x == 0 and self.max_value == 1:
return 1
else:
return None
elif self.min_value is not None and x < self.min_value:
return self.min_value
else:
max_low = self.cluster[self.high(x)].max_value
if max_low is not None and self.low(x) < max_low:
offset = self.cluster[self.high(x)].veb_successor(self.low(x))
return self.index(self.high(x), offset)
else:
succ_cluster = self.summary.veb_successor(self.high(x))
if succ_cluster is None:
return None
else:
offset = self.cluster[succ_cluster].min_value
return self.index(succ_cluster, offset)
def veb_predecessor(self, x):
"""
Get the largest value in the VEB tree which is less than x.
:type x: int
:rtype: int
"""
if self.w == 1:
if x == 1 and self.min_value == 0:
return 0
else:
return None
elif self.max_value is not None and x > self.max_value:
return self.max_value
else:
min_low = self.cluster[self.high(x)].min_value
if min_low is not None and self.low(x) > min_low:
offset = self.cluster[self.high(x)].veb_predecessor(self.low(x))
return self.index(self.high(x), offset)
else:
pred_cluster = self.summary.veb_predecessor(self.high(x))
if pred_cluster is None:
if self.min_value is not None and x > self.min_value:
return self.min_value
else:
return None
else:
offset = self.cluster[pred_cluster].max_value
return self.index(pred_cluster, offset)
Van Emde Boas树是一种非常高效的数据结构,可用于实现集合最小值、最大值、后继和前驱等操作。本文介绍了VEB树的基础概念和建设方法,并提供了Python实现。显而易见,该数据结构的时间复杂度为$O(\log\log U)$,其中$U$是能够表示的整数的范围。