Python|熊猫 dataframe.radd()
Python是一种用于进行数据分析的出色语言,主要是因为以数据为中心的Python包的奇妙生态系统。 Pandas就是其中之一,它使导入和分析数据变得更加容易。
Pandas dataframe.radd()函数执行数据帧和其他对象元素的添加。其他对象可以是常量、系列或数据框。该函数本质上执行其他 + 数据帧,但额外支持 fill_value,填充一个输入中的所有缺失值。
对于系列输入,索引必须匹配。
注意:这与 dataframe.add()函数不同。在这个函数中,我们将数据框添加到另一个对象。
Syntax: DataFrame.radd(other, axis=’columns’, level=None, fill_value=None)
Parameters :
other : Series, DataFrame, or constant
axis : For Series input, axis to match Series index on
level : Broadcast across a level, matching Index values on the passed MultiIndex level
fill_value : Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing
Returns : result : DataFrame
示例 #1:使用 radd()函数执行添加数据帧和系列
Python3
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]})
# Print the dataframe
df
Python3
# importing pandas as pd
import pandas as pd
# Create a Series
sr = pd.Series([5, 10, 15, 20], index =["A", "B", "C", "D"])
# Print the series
sr
Python3
# add dataframe to the series over the column axis
df.radd(sr, axis = 1)
Python3
# importing pandas as pd
import pandas as pd
# Creating the first dataframe
df1 = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]})
# Creating the second dataframe
df2 = pd.DataFrame({"A":[14, 5, None, 4, 12],
"B":[7, 6, 4, 5, None],
"C":[2, 11, 4, 3, 6],
"D":[4, None, 6, 2, 4]})
# add two dataframes
df1.radd(df2, fill_value = 100)
让我们创建一个与数据框列轴匹配索引的系列
Python3
# importing pandas as pd
import pandas as pd
# Create a Series
sr = pd.Series([5, 10, 15, 20], index =["A", "B", "C", "D"])
# Print the series
sr
现在,使用 dataframe.radd()函数执行加法。
Python3
# add dataframe to the series over the column axis
df.radd(sr, axis = 1)
输出 :
示例 #2:使用 radd()函数逐元素添加两个数据帧
Python3
# importing pandas as pd
import pandas as pd
# Creating the first dataframe
df1 = pd.DataFrame({"A":[1, 5, 3, 4, 2],
"B":[3, 2, 4, 3, 4],
"C":[2, 2, 7, 3, 4],
"D":[4, 3, 6, 12, 7]})
# Creating the second dataframe
df2 = pd.DataFrame({"A":[14, 5, None, 4, 12],
"B":[7, 6, 4, 5, None],
"C":[2, 11, 4, 3, 6],
"D":[4, None, 6, 2, 4]})
# add two dataframes
df1.radd(df2, fill_value = 100)
输出 :