scipy stats.skewtest()函数| Python
scipy.stats.skewtest(array, axis=0)
函数测试偏斜是否与正态分布不同。此函数检验零假设,即抽取样本的总体偏度与相应正态分布的偏度相同。
它的公式——
Parameters :
array : Input array or object having the elements.
axis : Axis along which the skewness test is to be computed. By default axis = 0.
Returns : Z-score (Statistics value) and P-value for the hypothesis test on data set.
代码#1:
# Performing skewtest
from scipy.stats import skewtest
import numpy as np
import pylab as p
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2 )
p.plot(x1, y1, '*')
print( '\nSkewness test for given data :\n', skewtest(y1))
输出 :
给定数据的偏度测试:SkewtestResult(statistic=11.874007880556805, pvalue=1.6153913086650964e-32)
代码#2:
# Performing skewtest
from scipy.stats import skewtest
import numpy as np
import pylab as p
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2 )
p.plot(x1, y1, '.')
print( '\nSkewness for data :\n', skewtest(y1))
输出 :
数据偏度:SkewtestResult(statistic=16.957642860709516, pvalue=1.689888374767126e-64)