sciPy stats.cumfreq()函数| Python
scipy.stats.cumfreq(a, numbins, defaultreallimits, weights)使用 histogram函数并计算累积频率直方图。它包括累积频率分箱值、每个分箱的宽度、实际下限、加分。
Parameters :
arr : [array_like] input array.
numbins : [int] number of bins to use for the histogram. [Default = 10]
defaultlimits : (lower, upper) range of the histogram.
weights : [array_like] weights for each array element.
Results :
– cumulative frequency binned values
– width of each bin
– lower real limit
– extra points.
代码#1:
Python3
# cumulative frequency
from scipy import stats
import numpy as np
arr1 = [1, 3, 27, 2, 5, 13]
print ("Array element : ", arr1, "\n")
a, b, c, d = stats.cumfreq(arr1, numbins = 4)
print ("cumulative frequency : ", a)
print ("Lower Limit : ", b)
print ("bin size : ", c)
print ("extra-points : ", d)
Python3
# cumulative frequency
from scipy import stats
import numpy as np
arr1 = [1, 3, 27, 2, 5, 13]
print ("Array element : ", arr1, "\n")
a, b, c, d = stats.cumfreq(arr1, numbins = 4,
weights = [.1, .2, .1, .3, 1, 6])
print ("cumfreqs : ", a)
print ("lowlim : ", b)
print ("binsize : ", c)
print ("extrapoints : ", d)
输出:
Array element : [1, 3, 27, 2, 5, 13]
cumulative frequency : [ 4. 5. 5. 6.]
Lower Limit : -3.33333333333
bin size : 8.66666666667
extra-points : 0
代码#2:
Python3
# cumulative frequency
from scipy import stats
import numpy as np
arr1 = [1, 3, 27, 2, 5, 13]
print ("Array element : ", arr1, "\n")
a, b, c, d = stats.cumfreq(arr1, numbins = 4,
weights = [.1, .2, .1, .3, 1, 6])
print ("cumfreqs : ", a)
print ("lowlim : ", b)
print ("binsize : ", c)
print ("extrapoints : ", d)
输出:
Array element : [1, 3, 27, 2, 5, 13]
cumfreqs : [ 1.6 7.6 7.6 7.7]
lowlim : -3.33333333333
binsize : 8.66666666667
extrapoints : 0