📅  最后修改于: 2023-12-03 15:12:37.310000             🧑  作者: Mango
本题涉及到数据结构的知识,需要掌握二叉搜索树、平衡二叉树以及 AVL 树的相关概念。
给定一个平衡二叉树 T 和一个整数 k,找到 T 中和 K 差值最小的元素。
如果平衡二叉树 T 为:
9
/ \
4 17
/ \ / \
3 6 12 22
则当 k=7 时,输出 6,因为 6 和 7 的差值最小(注意这里说的是差值,不是绝对值)。
首先,我们可以在平衡二叉树中找到值等于 k 的节点。如果找到了这个节点,那么它就是和 k 差值最小的元素,因为它和 k 的差值等于 0。
如果找不到值等于 k 的节点,那么我们需要找到一个最接近 k 的节点。接下来有以下两种情况:
对于第一种情况,我们需要比较这两个节点和 k 的距离,然后输出距离更小的那个节点。
对于第二种情况,我们需要递归地遍历整棵树,直到找到离 k 最近的节点为止。
我们可以使用 AVL 树来实现这个算法。AVL 树也是一种平衡二叉树,但是相比于普通的平衡二叉树,AVL 树具有更好的平衡性,可以快速地定位到目标节点。
下面是一个基于 AVL 树实现的参考代码,实现了给定一个平衡二叉树 T 和一个整数 k,找到 T 中和 K 差值最小的元素的功能:
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.height = 1
class AVLTree:
def __init__(self):
self.root = None
def insert(self, root, key):
if not root:
return Node(key)
elif key < root.val:
root.left = self.insert(root.left, key)
else:
root.right = self.insert(root.right, key)
root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right))
balance = self.getBalance(root)
if balance > 1 and key < root.left.val:
return self.rightRotate(root)
if balance < -1 and key > root.right.val:
return self.leftRotate(root)
if balance > 1 and key > root.left.val:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
if balance < -1 and key < root.right.val:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
def leftRotate(self, z):
y = z.right
T2 = y.left
y.left = z
z.right = T2
z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right))
return y
def rightRotate(self, z):
y = z.left
T3 = y.right
y.right = z
z.left = T3
z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right))
return y
def getHeight(self, root):
if not root:
return 0
return root.height
def getBalance(self, root):
if not root:
return 0
return self.getHeight(root.left) - self.getHeight(root.right)
def findClosest(self, root, k, minDiff, closest):
if root is None:
return closest
# Check if this node is the closest so far
if abs(root.val - k) < minDiff:
minDiff = abs(root.val - k)
closest = root.val
# If k is less than node value, go left
if k < root.val:
closest = self.findClosest(root.left, k, minDiff, closest)
# If k is greater than node value, go right
elif k > root.val:
closest = self.findClosest(root.right, k, minDiff, closest)
return closest
def findClosestNode(self, root, k):
if root is None:
return None
# If k is less than node value, go left
if k < root.val:
node = root.left
# If k is greater than node value, go right
elif k > root.val:
node = root.right
# If k is equal to node value, node is found
else:
node = root
# If node is None, return root
if node is None:
return root
# If k is less than node value, check left tree
if k < node.val:
closest = self.findClosest(root.left, k, abs(node.val - k), node.val)
# If k is greater than node value, check right tree
elif k > node.val:
closest = self.findClosest(root.right, k, abs(node.val - k), node.val)
# If k is equal to node value, node is the closest
else:
return node.val
return closest
def findClosestValue(self, root, k):
node = self.findClosestNode(root, k)
return node
def preOrder(self, root):
if not root:
return
print("{0} ".format(root.val), end="")
self.preOrder(root.left)
self.preOrder(root.right)
tree = AVLTree()
root = None
keys = [9, 4, 17, 3, 6, 12, 22]
for key in keys:
root = tree.insert(root, key)
print("The AVL tree is:")
tree.preOrder(root)
k = 7
closest = tree.findClosestValue(root, k)
print("\nThe closest value to {0} in AVL tree is {1}.".format(k, closest))