删除 Pandas DataFrame 的最后 n 行
让我们看看删除 Pandas Dataframe 的最后 n 行的各种方法。
首先,让我们制作一个数据框:
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Print Dataframe
print(df)
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Dropping last n rows using drop
df.drop(df.tail(n).index,
inplace = True)
# Printing dataframe
print(df)
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Removing last n rows
df_dropped_last_n = df.iloc[:-n]
# Printing dataframe
print(df_dropped_last_n)
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Using head() to
# drop last n rows
df1 = df.head(-n)
# Printing dataframe
print(df1)
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Slicing last n rows
df1 = df[:-n]
# Printing dataframe
print(df1)
输出:
方法 1:使用Dataframe.drop() 。
我们可以使用 drop() 方法删除最后 n 行。 drop() 方法获取一个 inplace 参数,该参数采用布尔值。如果 inplace 属性设置为 True,则数据框将使用数据框的新值(删除了最后 n 行的数据框)进行更新。
例子:
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Dropping last n rows using drop
df.drop(df.tail(n).index,
inplace = True)
# Printing dataframe
print(df)
输出:
方法二:使用 数据框.iloc[] 。
这 当数据框的索引标签不是数字系列 0、1、2、3….n 或用户不知道索引标签时,使用方法。
例子:
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Removing last n rows
df_dropped_last_n = df.iloc[:-n]
# Printing dataframe
print(df_dropped_last_n)
输出:
方法3:使用 数据框.head() 。
此方法用于返回数据框或系列的前 n 行(默认为 5 行)。
例子:
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Using head() to
# drop last n rows
df1 = df.head(-n)
# Printing dataframe
print(df1)
输出:
方法 4:使用Dataframe 切片 [ ]。
例子:
Python3
# Import Required Libraries
import pandas as pd
# Create a dictionary for the dataframe
dict = {
'Name': ['Sukritin', 'Sumit Tyagi', 'Akriti Goel',
'Sanskriti', 'Abhishek Jain'],
'Age': [22, 20, 45, 21, 22],
'Marks': [90, 84, -33, -87, 82]
}
# Converting Dictionary to
# Pandas Dataframe
df = pd.DataFrame(dict)
# Number of rows to drop
n = 3
# Slicing last n rows
df1 = df[:-n]
# Printing dataframe
print(df1)
输出: