在 Pandas Dataframe 中选择具有特定数据类型的列
在本文中,我们将看到如何从数据框中选择具有特定数据类型的列。可以使用DataFrame.select_dtypes()执行此操作 pandas模块中的方法。
Syntax: DataFrame.select_dtypes(include=None, exclude=None)
Parameters :
include, exclude : A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.
Return : The subset of the frame including the dtypes in include and excluding the dtypes in exclude.
循序渐进的方法:
- 首先,导入模块然后加载数据集。
Python3
# import required module
import pandas as pd
# assign dataset
df = pd.read_csv("train.csv")
Python3
# display description
# of the dataset
df.info()
Python3
# store columns with specific data type
integer_columns = df.select_dtypes(include=['int64']).columns
float_columns = df.select_dtypes(include=['float64']).columns
object_columns = df.select_dtypes(include=['object']).columns
Python3
# display columns
print('\nint64 columns:\n', integer_columns)
print('\nfloat64 columns:\n', float_columns)
print('\nobject columns:\n', object_columns)
Python3
# import required module
import pandas as pd
# assign dataset
df = pd.read_csv("train.csv")
# store columns with specific data type
integer_columns = df.select_dtypes(include=['int64']).columns
float_columns = df.select_dtypes(include=['float64']).columns
object_columns = df.select_dtypes(include=['object']).columns
# display columns
print('\nint64 columns:\n',integer_columns)
print('\nfloat64 columns:\n',float_columns)
print('\nobject columns:\n',object_columns)
Python3
# import required module
import pandas as pd
from vega_datasets import data
# assign dataset
df = data.seattle_weather()
# display dataset
df.sample(10)
Python3
# import required module
import pandas as pd
from vega_datasets import data
# assign dataset
df = data.seattle_weather()
# display description
# of dataset
df.info()
# store columns with specific data type
columns = df.select_dtypes(include=['float64']).columns
# display columns
print('\nColumns:\n', columns)
- 然后我们将使用dataframe.info()方法查找数据集中存在的数据类型。
蟒蛇3
# display description
# of the dataset
df.info()
输出:
- 现在,我们将使用DataFrame.select_dtypes()来选择特定的数据类型。
蟒蛇3
# store columns with specific data type
integer_columns = df.select_dtypes(include=['int64']).columns
float_columns = df.select_dtypes(include=['float64']).columns
object_columns = df.select_dtypes(include=['object']).columns
- 最后,显示具有特定数据类型的列。
蟒蛇3
# display columns
print('\nint64 columns:\n', integer_columns)
print('\nfloat64 columns:\n', float_columns)
print('\nobject columns:\n', object_columns)
输出:
以下是基于上述方法的完整程序:
蟒蛇3
# import required module
import pandas as pd
# assign dataset
df = pd.read_csv("train.csv")
# store columns with specific data type
integer_columns = df.select_dtypes(include=['int64']).columns
float_columns = df.select_dtypes(include=['float64']).columns
object_columns = df.select_dtypes(include=['object']).columns
# display columns
print('\nint64 columns:\n',integer_columns)
print('\nfloat64 columns:\n',float_columns)
print('\nobject columns:\n',object_columns)
输出:
例子:
在这里,我们将提取以下数据集的列:
蟒蛇3
# import required module
import pandas as pd
from vega_datasets import data
# assign dataset
df = data.seattle_weather()
# display dataset
df.sample(10)
输出:
现在,我们将显示所有数据类型为float64的列。
蟒蛇3
# import required module
import pandas as pd
from vega_datasets import data
# assign dataset
df = data.seattle_weather()
# display description
# of dataset
df.info()
# store columns with specific data type
columns = df.select_dtypes(include=['float64']).columns
# display columns
print('\nColumns:\n', columns)
输出: