📌  相关文章
📜  在按行排序的矩阵中查找中位数

📅  最后修改于: 2022-05-13 01:57:24.212000             🧑  作者: Mango

在按行排序的矩阵中查找中位数

我们得到一个大小为 r*c 的按行排序的矩阵,我们需要找到给定矩阵的中值。假设 r*c 总是奇数。
例子:

Input : 1 3 5
        2 6 9
        3 6 9
Output : Median is 5
If we put all the values in a sorted 
array A[] = 1 2 3 3 5 6 6 9 9)

Input: 1 3 4
       2 5 6
       7 8 9
Output: Median is 5

简单方法:解决此问题的最简单方法是将给定矩阵的所有元素存储在大小为 r*c 的数组中。然后我们可以对数组进行排序并在 O(r*clog(r*c)) 中找到中值元素,或者我们可以使用此处讨论的方法在 O(r*c) 中找到中值。在这两种情况下,所需的辅助空间都是 O(r*c)。
解决这个问题的一种有效方法是使用二分搜索算法。这个想法是,对于一个数字来说,应该有正好 (n/2) 个小于这个数字的数字。因此,我们尝试找到小于所有数字的数字计数。以下是此方法的分步算法:
算法

  1. 首先,我们找到矩阵中的最小和最大元素。通过比较每行的第一个元素可以很容易地找到最小元素,同样,通过比较每行的最后一个元素可以找到最大元素。
  2. 然后我们对从最小值到最大值的数字范围使用二进制搜索,找到最小值和最大值的中间值,并获得小于或等于中间值的数字计数。并相应地更改最小值或最大值。
  3. 对于要成为中位数的数字,应该有 (r*c)/2 个小于该数字的数字。所以对于每一个数字,我们通过在矩阵的每一行中使用upper_bound()来得到小于那个数字的计数,如果它小于要求的计数,中值必须大于选择的数字,否则中值必须是小于或等于所选数字。

下面是上述方法的实现:

C++
// C++ program to find median of a matrix
// sorted row wise
#include
using namespace std;
 
const int MAX = 100;
 
// function to find median in the matrix
int binaryMedian(int m[][MAX], int r ,int c)
{
    int min = INT_MAX, max = INT_MIN;
    for (int i=0; i max)
            max = m[i][c-1];
    }
 
    int desired = (r * c + 1) / 2;
    while (min < max)
    {
        int mid = min + (max - min) / 2;
        int place = 0;
 
        // Find count of elements smaller than mid
        for (int i = 0; i < r; ++i)
            place += upper_bound(m[i], m[i]+c, mid) - m[i];
        if (place < desired)
            min = mid + 1;
        else
            max = mid;
    }
    return min;
}
 
// driver program to check above functions
int main()
{
    int r = 3, c = 3;
    int m[][MAX]= { {1,3,5}, {2,6,9}, {3,6,9} };
    cout << "Median is " << binaryMedian(m, r, c) << endl;
    return 0;
}


Java
// Java program to find median of a matrix
// sorted row wise
import java.util.Arrays;
 
public class MedianInRowSorted
{
    // function to find median in the matrix
    static int binaryMedian(int m[][],int r, int c)
    {
        int max = Integer.MIN_VALUE;
        int min = Integer.MAX_VALUE;
         
        for(int i=0; i max)
                max = m[i][c-1];
        }
         
        int desired = (r * c + 1) / 2;
        while(min < max)
        {
            int mid = min + (max - min) / 2;
            int place = 0;
            int get = 0;
             
            // Find count of elements smaller than mid
            for(int i = 0; i < r; ++i)
            {
                 
                get = Arrays.binarySearch(m[i],mid);
                 
                // If element is not found in the array the
                // binarySearch() method returns
                // (-(insertion_point) - 1). So once we know
                // the insertion point we can find elements
                // Smaller than the searched element by the
                // following calculation
                if(get < 0)
                    get = Math.abs(get) - 1;
                 
                // If element is found in the array it returns
                // the index(any index in case of duplicate). So we go to last
                // index of element which will give  the number of
                // elements smaller than the number including
                // the searched element.
                else
                {
                    while(get < m[i].length && m[i][get] == mid)
                        get += 1;
                }
                 
                place = place + get;
            }
             
            if (place < desired)
                min = mid + 1;
            else
                max = mid;
        }
        return min;
    }
     
    // Driver Program to test above method.
    public static void main(String[] args)
    {
        int r = 3, c = 3;
        int m[][]= { {1,3,5}, {2,6,9}, {3,6,9} };
         
        System.out.println("Median is " + binaryMedian(m, r, c));
    }
}
 
// This code is contributed by Sumit Ghosh


Python3
# Python program to find median of matrix
# sorted row wise
 
from bisect import bisect_right as upper_bound
 
MAX = 100;
 
# Function to find median in the matrix
def binaryMedian(m, r, d):
    mi = m[0][0]
    mx = 0
    for i in range(r):
        if m[i][0] < mi:
            mi = m[i][0]
        if m[i][d-1] > mx :
            mx =  m[i][d-1]
     
    desired = (r * d + 1) // 2
     
    while (mi < mx):
        mid = mi + (mx - mi) // 2
        place = [0];
         
        # Find count of elements smaller than mid
        for i in range(r):
             j = upper_bound(m[i], mid)
             place[0] = place[0] + j
        if place[0] < desired:
            mi = mid + 1
        else:
            mx = mid
    print ("Median is", mi)
    return   
     
# Driver code
r, d = 3, 3
 
m = [ [1, 3, 5], [2, 6, 9], [3, 6, 9]]
binaryMedian(m, r, d)
 
# This code is contributed by Sachin BIsht


C#
// C# program to find median
// of a matrix sorted row wise
using System;
class MedianInRowSorted{
 
// Function to find median
// in the matrix
static int binaryMedian(int [,]m,
                        int r, int c)
{
  int max = int.MinValue;
  int min = int.MaxValue;
 
  for(int i = 0; i < r; i++)
  {
    // Finding the minimum
    // element
    if(m[i, 0] < min)
      min = m[i, 0];
 
    // Finding the maximum
    // element
    if(m[i, c - 1] > max)
      max = m[i, c - 1];
  }
 
  int desired = (r * c + 1) / 2;
  while(min < max)
  {
    int mid = min + (max - min) / 2;
    int place = 0;
    int get = 0;
 
    // Find count of elements
    // smaller than mid
    for(int i = 0; i < r; ++i)
    {
      get = Array.BinarySearch(
            GetRow(m, i), mid);
 
      // If element is not found
      // in the array the binarySearch()
      // method returns (-(insertion_
      // point) - 1). So once we know
      // the insertion point we can
      // find elements Smaller than
      // the searched element by the
      // following calculation
      if(get < 0)
        get = Math.Abs(get) - 1;
 
      // If element is found in the
      // array it returns the index(any
      // index in case of duplicate). So
      // we go to last index of element
      // which will give  the number of
      // elements smaller than the number
      // including the searched element.
      else
      {
        while(get < GetRow(m, i).GetLength(0) &&
              m[i, get] == mid)
          get += 1;
      }
 
      place = place + get;
    }
 
    if (place < desired)
      min = mid + 1;
    else
      max = mid;
  }
  return min;
}
 
public static int[] GetRow(int[,] matrix,
                           int row)
{
  var rowLength = matrix.GetLength(1);
  var rowVector = new int[rowLength];
 
  for (var i = 0; i < rowLength; i++)
    rowVector[i] = matrix[row, i];
 
  return rowVector;
}
   
// Driver code
public static void Main(String[] args)
{
  int r = 3, c = 3;
  int [,]m = {{1,3,5},
              {2,6,9},
              {3,6,9} };
 
  Console.WriteLine("Median is " +
                     binaryMedian(m, r, c));
}
}
 
// This code is contributed by Princi Singh


Javascript


输出
Median is 5

时间复杂度:O(32 * r * log(c))。上限函数将花费 log(c) 时间并针对每一行执行。并且由于数字将是 32 位的最大值,因此从 min 到 max 的数字的二进制搜索将在最多 32 次( log2(2^32) = 32 )次操作中执行。
辅助空间:O(1)