📜  scipy stats.exponweib() | Python

📅  最后修改于: 2022-05-13 01:55:41.654000             🧑  作者: Mango

scipy stats.exponweib() | Python

scipy.stats.exponweib()是一个指数 Weibull 连续随机变量,使用标准格式和一些形状参数定义以完成其规范。

代码 #1:创建指数 Weibull 连续随机变量

from scipy.stats import exponweib  
  
numargs = exponweib .numargs
[a, b] = [0.6, ] * numargs
rv = exponweib (a, b)
  
print ("RV : \n", rv) 

输出 :

RV : 
 

代码 #2:指数 Weibull 随机变量和概率分布。

import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = exponweib .rvs(a, b, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = exponweib .pdf(a, b, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

输出 :

Random Variates : 
 [8.17460511e+00 1.33286202e+00 1.77493153e+01 1.83861272e-01
 5.32255458e-01 1.34520149e+00 1.91022498e-02 3.08216056e-03
 6.46223522e-03 1.75786657e-01]

Probability Distribution : 
 [0.00442484 0.04919014 0.09470438 0.14070318 0.1869346  0.2331608
 0.27915913 0.32472306 0.36966267 0.41380492]
 

代码#3:图形表示。

import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))

输出 :

Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

代码#4:改变位置参数

import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = exponweib .pdf(x, 2, 6)
y2 = exponweib .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

输出 :