sciPy stats.zmap()函数| Python
scipy.stats.zmap(scores, compare, axis=0, ddof=0)函数计算输入数据的相对Z 分数。标准化为零均值和单位方差的分数,其中均值和方差是根据比较数组计算的。
其公式:
Parameters :
scores : [array_like]Input array or object for which Z-score is to calculate.
compare : [array_like]Input array or object for which the mean and standard deviation of the normalization are taken
axis : Axis along which the mean is to be computed. By default axis = 0.
ddof : Degree of freedom correction for Standard Deviation.
Results : Z-score of the input data.
代码 #1:工作
# stats.zmap() method
import numpy as np
from scipy import stats
arr1 = [[20, 2, 7, 1, 34],
[50, 12, 12, 34, 4]]
arr2 = [[50, 12, 12, 34, 4],
[12, 11, 10, 34, 21]]
print ("\narr1 : ", arr1)
print ("\narr2 : ", arr2)
print ("\nZ-score : \n", stats.zmap(arr1, arr2))
输出 :
arr1 : [[20, 2, 7, 1, 34], [50, 12, 12, 34, 4]]
arr2 : [[50, 12, 12, 34, 4], [12, 11, 10, 34, 21]]
Z-score :
[[ -0.57894737 -19. -4. -inf 2.52941176]
[ 1. 1. 1. nan -1. ]]
代码 #2:Z 分数
# stats.zmap() method
import numpy as np
from scipy import stats
arr1 = [[20, 2, 7, 1, 34],
[50, 12, 12, 34, 4]]
arr2 = [[50, 12, 12, 34, 4],
[12, 11, 10, 34, 21]]
print ("\nZ-score : \n", stats.zmap(arr1, arr2, axis = 1))
输出 :
sem ratio for arr1 :
[[-0.14087457 -1.19743386 -0.90394517 -1.2561316 0.68089376]
[ 3.5640998 -0.61601725 -0.61601725 1.80405051 -1.49604189]]