Python中的 sympy.stats.MultivariateBeta()函数
在sympy.stats.MultivariateBeta()方法的帮助下,我们可以使用 Dirichlet/Multivariate Beta Distribution 创建一个连续随机变量。
它是 beta 分布的多元泛化。
Syntax: sympy.stats.MultivariateBeta(syms, alpha)
Parameters:
syms: the symbol
alpha: positive real numbers signifying concentration numbers
Returns: a continuous random variable with multivariate beta distribution.
示例 #1:
Python3
# import sympy, MultivariateBeta, density, Symbol
from sympy.stats.joint_rv_types import MultivariateBeta
from sympy.stats import density
from sympy import Symbol, pprint
a = Symbol('a', positive = True)
b = Symbol('b', positive = True)
x = Symbol('x')
y = Symbol('y')
# using sympy.stats.MultivariateBeta() method
M = MultivariateBeta('M', [a, b])
mvbDist = density(M)(x, y)
pprint(mvbDist)
Python3
# import sympy, MultivariateBeta, density, Symbol
from sympy.stats.joint_rv_types import MultivariateBeta
from sympy.stats import density
from sympy import Symbol, pprint
x = Symbol('x')
y = Symbol('y')
# using sympy.stats.MultivariateBeta() method
M = MultivariateBeta('M', [2, 1 / 2])
mvbDist = density(M)(x, y)
pprint(mvbDist)
输出 :
a1 - 1 a2 - 1
x *y *Gamma(a1 + a2)
------------------------------
Gamma(a1)*Gamma(a2)
示例 #2:
Python3
# import sympy, MultivariateBeta, density, Symbol
from sympy.stats.joint_rv_types import MultivariateBeta
from sympy.stats import density
from sympy import Symbol, pprint
x = Symbol('x')
y = Symbol('y')
# using sympy.stats.MultivariateBeta() method
M = MultivariateBeta('M', [2, 1 / 2])
mvbDist = density(M)(x, y)
pprint(mvbDist)
输出 :
3*x
-------
___
4*\/ y