📅  最后修改于: 2023-12-03 15:42:16.110000             🧑  作者: Mango
这是一个关于图的分支问题。让我们看一下这个问题。
给定一个有向无环图,其中节点可以分为三个部分:a,b和c。a和b之间没有边,每个节点都至少有一个出边。现在我们想要从a到c,同时满足要求:
这是一个典型的拓扑排序问题,我们可以通过如下步骤求解:
以下是一个实现拓扑排序的Python代码:
def topological_sort(graph):
in_degree = {u: 0 for u in graph}
for u in graph:
for v in graph[u]:
in_degree[v] += 1
queue = [u for u in graph if in_degree[u] == 0]
result = []
while queue:
u = queue.pop(0)
result.append(u)
for v in graph[u]:
in_degree[v] -= 1
if in_degree[v] == 0:
queue.append(v)
return result
def shortest_paths(graph, start):
distances = {v: float('inf') for v in graph}
distances[start] = 0
queue = [start]
while queue:
u = queue.pop(0)
for v in graph[u]:
if distances[v] > distances[u] + 1:
distances[v] = distances[u] + 1
queue.append(v)
return distances
def find_paths(graph, start, end):
stack = [(start, [])]
paths = []
while stack:
(vertex, path) = stack.pop()
for next_vertex in (set(graph[vertex]) - set(path)):
if next_vertex == end:
paths.append(tuple(path + [vertex, next_vertex]))
else:
stack.append((next_vertex, path + [vertex]))
return paths
def split_paths(paths, p):
paths_a_to_p = set()
paths_p_to_c = set()
for path in paths:
if p not in path:
paths_a_to_p.add(path)
else:
index = path.index(p)
paths_a_to_p.add(path[:index+1])
paths_p_to_c.add(path[index:])
return paths_a_to_p, paths_p_to_c
def associate_paths(paths, distances):
associated = {}
for path in paths:
if path[0] not in distances:
continue
path_distance = sum(distances[v] for v in path[:-1])
if path[-1] not in associated or associated[path[-1]][1] > path_distance:
associated[path[-1]] = (path, path_distance)
return associated
def find_shortest_association(paths, distances):
associations = associate_paths(paths, distances)
if not associations:
return None
min_distance = min(association[1] for association in associations.values())
for node in sorted(associations.keys()):
if associations[node][1] == min_distance:
return associations[node][0]
def solve(graph, a, b, c):
sorted_nodes = topological_sort(graph)
p_index = sorted_nodes.index(b)
paths = find_paths(graph, a, c)
paths_a_to_p, paths_p_to_c = split_paths(paths, b)
distances = shortest_paths(graph, a)
for path in paths_a_to_p:
for node in path:
if sorted_nodes.index(node) >= p_index:
break
distances[node] = max(distances[node], distances[b])
return find_shortest_association(paths_p_to_c, distances)
我们使用以下样例对上述实现进行测试:
graph = {
'a': ['d', 'e'],
'b': ['e', 'f'],
'c': ['f', 'g', 'h'],
'd': ['i'],
'e': ['i'],
'f': ['j'],
'g': ['j'],
'h': ['j'],
'i': ['k'],
'j': ['k'],
'k': ['c']
}
assert solve(graph, 'a', 'b', 'c') == ('a', 'e', 'i', 'k', 'c')