通过对所有n∈N使用数学归纳原理证明以下内容:
问题1:1 + 3 + 3 2 +…….. + 3 n-1 =
解决方案:
We have,
P(n) = 1 + 3 + 32 + …….. + 3n-1 =
For n=1, we get
P(1) = 1 =
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1 + 3 + 32 + …….. + 3k-1 = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1 + 3 + 32 + …….. + 3k-1 + 3(k+1)-1
= (1 + 3 + 32 + …….. + 3k-1) + 3k
From Eq(1), we get
= + 3k
=
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题2:1 + 2 3 + 3 3 +……….. + n 3 =
解决方案:
We have,
P(n) = 1 + 23 + 33 + ……….. + n3 =
For n=1, we get
P(1) = 1 = = 1
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1 + 23 + 33 + ……….. + k3 = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1 + 23 + 33 + ……….. + k3 + (k+1)3
= (1 + 23 + 33 + ……….. + k3) + (k+1)3
From Eq(1), we get
= + (k+1)3
= + (k+1)3
=
Taking (k+1)2, we get
=
=
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题3:1 + +……。 + =
解决方案:
We have,
P(n) = 1 + =
For n=1, we get
P(1) = 1 = = 1
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1 + = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1 + +
= (1 + ) +
From Eq(1), we get
=
As we know that,
Sum of first natural number,
1 + 2 + 3 + …… + n =
So, we get
=
=
=
=
=
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题4:1.2.3 + 2.3.4 +…+ n(n + 1)(n + 2)=
解决方案:
We have,
P(n) = 1.2.3 + 2.3.4 +…+ n(n+1) (n+2) =
For n=1, we get
P(1) = 1.2.3 = = = 1.2.3
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1.2.3 + 2.3.4 +…+ k(k+1) (k+2) = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1.2.3 + 2.3.4 +…+ k(k+1) (k+2) + (k+1)(k+1+1) (k+1+2)
= (1.2.3 + 2.3.4 +…+ k(k+1) (k+2)) + (k+1)(k+2) (k+3)
From Eq(1), we get
= + (k+1)(k+2)(k+3)
= (k+1)(k+2) (k+3) ( + 1)
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题5:1.3 + 2.3 2 + 3.3 3 +…+ n.3 n =
解决方案:
We have,
P(n) = 1.3 + 2.32 + 3.33 +…+ n.3n =
For n=1, we get
P(1) = 1.3 = 3 = = 3
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1.3 + 2.32 + 3.33 +…+ k.3k = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1.3 + 2.32 + 3.33 +…+ k.3k + (k+1).3(k+1)
= (1.3 + 2.32 + 3.33 +…+ k.3k) + (k+1).3(k+1)
From Eq(1), we get
= + (k+1).3(k+1)
=
= 3k+1
= 3k+1
= 3k+1
= 3(k+1)+1
Hence,
P(k+1) = 3(k+1)+1
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题6:1.2 + 2.3 + 3.4 +…+ n。(n + 1)=
解决方案:
We have,
P(n) = 1.2 + 2.3 + 3.4 +…+ n.(n+1) =
For n=1, we get
P(1) = 1.2 = 2 = = 2
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1.2 + 2.3 + 3.4 +…+ k.(k+1) = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1.2 + 2.3 + 3.4 +…+ k.(k+1) + (k+1)(k+1+1)
= (1.2 + 2.3 + 3.4 +…+ k.(k+1)) + (k+1)(k+2)
From Eq(1), we get
= + (k+1)(k+2)
=
= (k+1)(k+2)
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题7:1.3 + 3.5 + 5.7 +…+(2n–1)(2n + 1)=
解决方案:
We have,
P(n) = 1.3 + 3.5 + 5.7 +…+ (2n–1) (2n+1) =
For n=1, we get
P(1) = 1.3 = 3 = = = 3
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1.3 + 3.5 + 5.7 +…+ (2k–1) (2k+1) = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1.3 + 3.5 + 5.7 +…+ (2k–1) (2k+1) + (2(k+1)-1)(2(k+1)+1)
= (1.3 + 3.5 + 5.7 +…+ (2k–1) (2k+1)) + (2k+1)(2k+3)
From Eq(1), we get
= + (4k2+8k+3)
=
=
=
=
=
=
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题8:1.2 + 2.2 2 + 3.2 3 +…+ n.2 n =(n–1)2 n +1 + 2
解决方案:
We have,
P(n) = 1.2 + 2.22 + 3.23 + …+n.2n = (n–1) 2n + 1 + 2
For n=1, we get
P(1) = 1.2 = 2 = (1–1) 2(1) + 1 + 2 = 2
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = 1.2 + 2.22 + 3.23 + …+k.2k = (k–1) 2k + 1 + 2 ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = 1.2 + 2.22 + 3.23 + …+k.2k + (k+1).2(k+1)
= (1.2 + 2.22 + 3.23 + …+k.2k) + (k+1).2(k+1)
From Eq(1), we get
= (k–1) 2k + 1 + 2 + (k+1).2k+1
= 2k + 1((k–1) + (k+1)) + 2
= 2k + 1(2k) + 2
= k.2k+1+1 + 2
= ((k+1)-1).2(k+1)+1 + 2
Hence,
P(k+1) = ((k+1)-1).2(k+1)+1 + 2
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题9: +……+
解决方案:
We have,
P(n) =
For n=1, we get
P(1) = = 1 – =
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) =
= () +
From Eq(1), we get
= 1 –
= 1 –
= 1 –
= 1 –
= 1 –
Hence,
P(k+1) = 1 –
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题10: +……+
解决方案:
We have,
P(n) =
For n=1, we get
P(1) =
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) =
= () +
From Eq(1), we get
=
=
=
=
=
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题11: +……+
解决方案:
We have,
P(n) =
For n=1, we get
P(1) =
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) =
= () +
From Eq(1), we get
=
=
=
=
=
=
=
=
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题12:a + ar + ar 2 +……+ ar n-1 =
解决方案:
We have,
P(n) = a + ar + ar2 + …… + arn-1 =
For n=1, we get
P(1) = a = = a
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = a + ar + ar2 + …… + ark-1 = ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) = a + ar + ar2 + …… + ark-1 + ar(k+1)-1
= (a + ar + ar2 + …… + ark-1) + ark
From Eq(1), we get
= + ark
=
=
=
Hence,
P(k+1) =
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.
问题13:(1+ )(1+ )(1+ )…..(1+ )=(n + 1) 2
解决方案:
We have,
P(n) = = (n+1)2
For n=1, we get
P(1) = 1+ = 1+3 = 4 = (1+1)2 = 22 = 4
So, P(1) is true
Assume that P(k) is true for some positive integer n=k
P(k) = = (k+1)2 ……………..(1)
Let’s prove that P(k + 1) is also true. Now, we have
P(k+1) =
=
From Eq(1), we get
= (k+1)2 (1+)
= (k+1)2
= (k+1)2 + 2(k+1) + 1
= {(k+1)}2
Hence,
P(k+1) = {(k+1)}2
Thus, P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.