给定一个有N 个节点和E 条边的有向图,一个源S和一个目的地D节点。任务是找到从S到D的边的 XOR 和最小的路径。如果没有从S到D 的路径,则打印-1 。
例子:
Input: N = 3, E = 3, Edges = {{{1, 2}, 5}, {{1, 3}, 9}, {{2, 3}, 1}}, S = 1, and D = 3
Output: 4
The path with smallest XOR of edges weight will be 1->2->3
with XOR sum as 5^1 = 4.
Input: N = 3, E = 3, Edges = {{{3, 2}, 5}, {{3, 3}, 9}, {{3, 3}, 1}}, S = 1, and D = 3
Output: -1
方法:这个想法是使用 Dijkstra 的最短路径算法,稍有变化。以下是该问题的分步方法:
- 基本情况:如果源节点等于目标,则返回0 。
- 用源节点和它的权重为0和一个访问过的数组初始化一个优先级队列。
- 虽然优先级队列不为空:
- 从优先级队列中弹出最顶层的元素。我们称它为当前节点。
- 在访问数组的帮助下检查当前节点是否已经被访问,如果是,则继续。
- 如果当前节点是目标节点,则返回当前节点与源节点的 XOR 和距离。
- 迭代与当前节点相邻的所有节点并将它们的距离与当前距离和边权重作为异或和推入优先级队列。
- 否则,就没有从源到目的地的路径。因此,返回-1
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
// Function to return the smallest
// xor sum of edges
double minXorSumOfEdges(
int s, int d,
vector > > gr)
{
// If the source is equal
// to the destination
if (s == d)
return 0;
// Initialise the priority queue
set > pq;
pq.insert({ 0, s });
// Visited array
bool v[gr.size()] = { 0 };
// While the priority-queue
// is not empty
while (pq.size()) {
// Current node
int curr = pq.begin()->second;
// Current xor sum of distance
int dist = pq.begin()->first;
// Popping the top-most element
pq.erase(pq.begin());
// If already visited continue
if (v[curr])
continue;
// Marking the node as visited
v[curr] = 1;
// If it is a destination node
if (curr == d)
return dist;
// Traversing the current node
for (auto it : gr[curr])
pq.insert({ dist ^ it.second,
it.first });
}
// If no path exists
return -1;
}
// Driver code
int main()
{
int n = 3;
// Graph as adjacency matrix
vector > >
gr(n + 1);
// Input edges
gr[1].push_back({ 3, 9 });
gr[2].push_back({ 3, 1 });
gr[1].push_back({ 2, 5 });
// Source and destination
int s = 1, d = 3;
cout << minXorSumOfEdges(s, d, gr);
return 0;
}
Java
// Java implementation of the approach
import java.util.PriorityQueue;
import java.util.ArrayList;
class Pair implements Comparable
{
int first, second;
public Pair(int first, int second)
{
this.first = first;
this.second = second;
}
@Override
public int compareTo(Pair p)
{
if (this.first == p.first)
{
return this.second - p.second;
}
return this.first - p.first;
}
}
class GFG{
// Function to return the smallest
// xor sum of edges
static int minXorSumOfEdges(int s, int d,
ArrayList> gr)
{
// If the source is equal
// to the destination
if (s == d)
return 0;
// Initialise the priority queue
PriorityQueue pq = new PriorityQueue<>();
pq.add(new Pair(0, s));
// Visited array
boolean[] v = new boolean[gr.size()];
// While the priority-queue
// is not empty
while (!pq.isEmpty())
{
// Iterator itr = pq.iterator();
// Current node
Pair p = pq.poll();
int curr = p.second;
// Current xor sum of distance
int dist = p.first;
// If already visited continue
if (v[curr])
continue;
// Marking the node as visited
v[curr] = true;
// If it is a destination node
if (curr == d)
return dist;
// Traversing the current node
for(Pair it : gr.get(curr))
pq.add(new Pair(dist ^ it.second, it.first));
}
// If no path exists
return -1;
}
// Driver code
public static void main(String[] args)
{
int n = 3;
// Graph as adjacency matrix
ArrayList> gr = new ArrayList<>();
for(int i = 0; i < n + 1; i++)
{
gr.add(new ArrayList());
}
// Input edges
gr.get(1).add(new Pair(3, 9));
gr.get(2).add(new Pair(3, 1));
gr.get(1).add(new Pair(2, 5));
// Source and destination
int s = 1, d = 3;
System.out.println(minXorSumOfEdges(s, d, gr));
}
}
// This code is contributed by sanjeev2552
Python3
# Python3 implementation of the approach
from collections import deque
# Function to return the smallest
# xor sum of edges
def minXorSumOfEdges(s, d, gr):
# If the source is equal
# to the destination
if (s == d):
return 0
# Initialise the priority queue
pq = []
pq.append((0, s))
# Visited array
v = [0] * len(gr)
# While the priority-queue
# is not empty
while (len(pq) > 0):
pq = sorted(pq)
# Current node
curr = pq[0][1]
# Current xor sum of distance
dist = pq[0][0]
# Popping the top-most element
del pq[0]
# If already visited continue
if (v[curr]):
continue
# Marking the node as visited
v[curr] = 1
# If it is a destination node
if (curr == d):
return dist
# Traversing the current node
for it in gr[curr]:
pq.append((dist ^ it[1],
it[0]))
# If no path exists
return -1
# Driver code
if __name__ == '__main__':
n = 3
# Graph as adjacency matrix
gr = [[] for i in range(n + 1)]
# Input edges
gr[1].append([ 3, 9 ])
gr[2].append([ 3, 1 ])
gr[1].append([ 2, 5 ])
# Source and destination
s = 1
d = 3
print(minXorSumOfEdges(s, d, gr))
# This code is contributed by mohit kumar 29
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
// Function to return the smallest
// xor sum of edges
static int minXorSumOfEdges(int s, int d, List>> gr)
{
// If the source is equal
// to the destination
if (s == d)
return 0;
// Initialise the priority queue
List> pq = new List>();
pq.Add(new Tuple(0, s));
// Visited array
int[] v = new int[gr.Count];
// While the priority-queue
// is not empty
while (pq.Count > 0)
{
pq.Sort();
// Current node
int curr = pq[0].Item2;
// Current xor sum of distance
int dist = pq[0].Item1;
// Popping the top-most element
pq.RemoveAt(0);
// If already visited continue
if(v[curr] != 0)
continue;
// Marking the node as visited
v[curr] = 1;
// If it is a destination node
if (curr == d)
return dist;
// Traversing the current node
foreach(Tuple it in gr[curr])
{
pq.Add(new Tuple(dist ^ it.Item2, it.Item1));
}
}
// If no path exists
return -1;
}
// Driver code
static void Main()
{
int n = 3;
// Graph as adjacency matrix
List>> gr = new List>>();
for(int i = 0; i < n + 1; i++)
{
gr.Add(new List>());
}
// Input edges
gr[1].Add(new Tuple(3, 9));
gr[2].Add(new Tuple(3, 1));
gr[1].Add(new Tuple(2, 5));
// Source and destination
int s = 1;
int d = 3;
Console.WriteLine(minXorSumOfEdges(s, d, gr));
}
}
// This codee is contributed by divyesh072019.
输出:
4
时间复杂度: O((E + V) logV)
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live