📅  最后修改于: 2023-12-03 14:49:58.275000             🧑  作者: Mango
旅行商问题(Traveling Salesman Problem,TSP)是指在所有城市之间建立完全图,每两个城市之间的距离已知,旅行商要从其中某一城市出发,恰好走遍所有城市一次,并回到起点城市,问如何规划他的路径,使所走的路程最短。
遗传算法是一种基于生物进化和自然选择的搜索和优化算法。它模拟进化过程,通过染色体的交叉、变异和选择等操作获取解的优化。
使用遗传算法解决旅行商问题,可以找到一种尽可能优化的路径,但是也有一定的局限性和不足之处。
使用遗传算法求解旅行商问题的一般步骤如下:
下面是使用Python实现基于遗传算法的旅行商问题求解示例代码:
import numpy as np
# 城市数量
city_num = 10
# 城市坐标
city_position = np.random.rand(city_num, 2)
# 计算两点之间距离
def calc_distance(position_1, position_2):
return np.sqrt(np.sum(np.square(position_1 - position_2)))
# 计算染色体距离总和和适应度
def calc_path_length(city_order):
path_length = 0
for i in range(city_num - 1):
path_length += calc_distance(city_position[city_order[i]], city_position[city_order[i + 1]])
path_length += calc_distance(city_position[city_order[-1]], city_position[city_order[0]])
fitness = 1.0 / path_length
return path_length, fitness
# 初始化种群
def init_population(population_size):
population = []
for i in range(population_size):
population.append(np.random.permutation(city_num))
return population
# 选择算子
def selection(population, fitness, select_num):
idx_list = np.random.choice(len(population), size=select_num, replace=False, p=fitness/np.sum(fitness))
chromosome_list = []
for idx in idx_list:
chromosome_list.append(population[idx])
return chromosome_list
# 交叉算子
def crossover(parent_1, parent_2):
child_1 = np.zeros_like(parent_1)
child_2 = np.zeros_like(parent_2)
r1 = np.random.randint(len(parent_1))
r2 = np.random.randint(len(parent_1))
if r1 > r2:
r1, r2 = r2, r1
child_1[r1:r2] = parent_1[r1:r2]
child_2[r1:r2] = parent_2[r1:r2]
idx = r2
for i in range(len(parent_1)):
if idx == len(parent_1):
idx = 0
if parent_2[i] not in child_1:
child_1[idx] = parent_2[i]
idx += 1
if parent_1[i] not in child_2:
child_2[idx] = parent_1[i]
idx += 1
return child_1, child_2
# 变异算子
def mutation(chromosome, mutation_rate):
for i in range(len(chromosome)):
if np.random.rand() < mutation_rate:
j = np.random.randint(len(chromosome))
chromosome[i], chromosome[j] = chromosome[j], chromosome[i]
return chromosome
# 遗传算法求解
def TSP(population_size=500, generation_num=1000, select_num=200, mutation_rate=0.1):
# 初始化种群
population = init_population(population_size)
# 计算初始适应度
fitness = []
for i in range(population_size):
_, f = calc_path_length(population[i])
fitness.append(f)
# 迭代
for i in range(generation_num):
# 选择
chromosome_list = selection(population, fitness, select_num)
# 交叉
child_list = []
for j in range(0, select_num-1, 2):
child_1, child_2 = crossover(chromosome_list[j], chromosome_list[j+1])
child_list.append(child_1)
child_list.append(child_2)
# 变异
for j in range(select_num):
child_list[j] = mutation(child_list[j], mutation_rate)
# 计算新个体的适应度
new_fitness = []
for j in range(select_num):
_, f = calc_path_length(child_list[j])
new_fitness.append(f)
# 更新种群和适应度
population[0:select_num] = chromosome_list
population[select_num:] = child_list
fitness[0:select_num] = fitness
fitness[select_num:] = new_fitness
# 输出结果
idx = np.argmax(fitness)
path_length, _ = calc_path_length(population[idx])
print('最短路径长度:%.4f' % path_length)
print('最短路径:', population[idx])
TSP()
以上代码使用numpy库生成了10个随机的城市坐标,然后利用上述的算法步骤求解旅行商问题。输出结果为该问题的最短路径长度和最短路径。可以通过修改程序中的参数调整种群大小、迭代次数、选择个体数量和变异率。