旅行商问题 (TSP):给定一组城市和每对城市之间的距离,问题是找到最短的路线,该路线恰好访问每个城市一次并返回起点。
注意哈密顿循环和 TSP 之间的区别。 Hamiltoninan 循环问题是寻找是否存在一次访问每个城市恰好一次的旅行。这里我们知道哈密顿环存在(因为图是完整的)并且实际上存在许多这样的环,问题是找到一个最小权重的哈密顿环。
例如,考虑图中所示的图形。图中的 TSP 游览是 1 -> 2 -> 4 -> 3 -> 1。游览的成本是 10 + 25 + 30 + 15,即 80。
该问题是著名的 NP 难题。这个问题没有多项式时间已知解。
Output of Given Graph:
Minimum weight Hamiltonian Cycle : 10 + 25 + 30 + 15 = 80
方法:在这篇文章中,讨论了简单解决方案的实现。
- 考虑城市 1(假设第 0 个节点)作为起点和终点。由于路线是循环的,我们可以将任何点视为起点。
- 以dfs的方式开始从源到其相邻节点的遍历。
- 计算每次遍历的成本,并跟踪最小成本并不断更新最小成本存储值的值。
- 以最小成本返回排列。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
#define V 4
// Function to find the minimum weight Hamiltonian Cycle
void tsp(int graph[][V], vector& v, int currPos,
int n, int count, int cost, int& ans)
{
// If last node is reached and it has a link
// to the starting node i.e the source then
// keep the minimum value out of the total cost
// of traversal and "ans"
// Finally return to check for more possible values
if (count == n && graph[currPos][0]) {
ans = min(ans, cost + graph[currPos][0]);
return;
}
// BACKTRACKING STEP
// Loop to traverse the adjacency list
// of currPos node and increasing the count
// by 1 and cost by graph[currPos][i] value
for (int i = 0; i < n; i++) {
if (!v[i] && graph[currPos][i]) {
// Mark as visited
v[i] = true;
tsp(graph, v, i, n, count + 1,
cost + graph[currPos][i], ans);
// Mark ith node as unvisited
v[i] = false;
}
}
};
// Driver code
int main()
{
// n is the number of nodes i.e. V
int n = 4;
int graph[][V] = {
{ 0, 10, 15, 20 },
{ 10, 0, 35, 25 },
{ 15, 35, 0, 30 },
{ 20, 25, 30, 0 }
};
// Boolean array to check if a node
// has been visited or not
vector v(n);
for (int i = 0; i < n; i++)
v[i] = false;
// Mark 0th node as visited
v[0] = true;
int ans = INT_MAX;
// Find the minimum weight Hamiltonian Cycle
tsp(graph, v, 0, n, 1, 0, ans);
// ans is the minimum weight Hamiltonian Cycle
cout << ans;
return 0;
}
Java
// Java implementation of the approach
class GFG
{
// Function to find the minimum weight
// Hamiltonian Cycle
static int tsp(int[][] graph, boolean[] v,
int currPos, int n,
int count, int cost, int ans)
{
// If last node is reached and it has a link
// to the starting node i.e the source then
// keep the minimum value out of the total cost
// of traversal and "ans"
// Finally return to check for more possible values
if (count == n && graph[currPos][0] > 0)
{
ans = Math.min(ans, cost + graph[currPos][0]);
return ans;
}
// BACKTRACKING STEP
// Loop to traverse the adjacency list
// of currPos node and increasing the count
// by 1 and cost by graph[currPos,i] value
for (int i = 0; i < n; i++)
{
if (v[i] == false && graph[currPos][i] > 0)
{
// Mark as visited
v[i] = true;
ans = tsp(graph, v, i, n, count + 1,
cost + graph[currPos][i], ans);
// Mark ith node as unvisited
v[i] = false;
}
}
return ans;
}
// Driver code
public static void main(String[] args)
{
// n is the number of nodes i.e. V
int n = 4;
int[][] graph = {{0, 10, 15, 20},
{10, 0, 35, 25},
{15, 35, 0, 30},
{20, 25, 30, 0}};
// Boolean array to check if a node
// has been visited or not
boolean[] v = new boolean[n];
// Mark 0th node as visited
v[0] = true;
int ans = Integer.MAX_VALUE;
// Find the minimum weight Hamiltonian Cycle
ans = tsp(graph, v, 0, n, 1, 0, ans);
// ans is the minimum weight Hamiltonian Cycle
System.out.println(ans);
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 implementation of the approach
V = 4
answer = []
# Function to find the minimum weight
# Hamiltonian Cycle
def tsp(graph, v, currPos, n, count, cost):
# If last node is reached and it has
# a link to the starting node i.e
# the source then keep the minimum
# value out of the total cost of
# traversal and "ans"
# Finally return to check for
# more possible values
if (count == n and graph[currPos][0]):
answer.append(cost + graph[currPos][0])
return
# BACKTRACKING STEP
# Loop to traverse the adjacency list
# of currPos node and increasing the count
# by 1 and cost by graph[currPos][i] value
for i in range(n):
if (v[i] == False and graph[currPos][i]):
# Mark as visited
v[i] = True
tsp(graph, v, i, n, count + 1,
cost + graph[currPos][i])
# Mark ith node as unvisited
v[i] = False
# Driver code
# n is the number of nodes i.e. V
if __name__ == '__main__':
n = 4
graph= [[ 0, 10, 15, 20 ],
[ 10, 0, 35, 25 ],
[ 15, 35, 0, 30 ],
[ 20, 25, 30, 0 ]]
# Boolean array to check if a node
# has been visited or not
v = [False for i in range(n)]
# Mark 0th node as visited
v[0] = True
# Find the minimum weight Hamiltonian Cycle
tsp(graph, v, 0, n, 1, 0)
# ans is the minimum weight Hamiltonian Cycle
print(min(answer))
# This code is contributed by mohit kumar
C#
// C# implementation of the approach
using System;
class GFG
{
// Function to find the minimum weight Hamiltonian Cycle
static int tsp(int [,]graph, bool []v, int currPos,
int n, int count, int cost, int ans)
{
// If last node is reached and it has a link
// to the starting node i.e the source then
// keep the minimum value out of the total cost
// of traversal and "ans"
// Finally return to check for more possible values
if (count == n && graph[currPos,0] > 0)
{
ans = Math.Min(ans, cost + graph[currPos,0]);
return ans;
}
// BACKTRACKING STEP
// Loop to traverse the adjacency list
// of currPos node and increasing the count
// by 1 and cost by graph[currPos,i] value
for (int i = 0; i < n; i++) {
if (v[i] == false && graph[currPos,i] > 0)
{
// Mark as visited
v[i] = true;
ans = tsp(graph, v, i, n, count + 1,
cost + graph[currPos,i], ans);
// Mark ith node as unvisited
v[i] = false;
}
}
return ans;
}
// Driver code
static void Main()
{
// n is the number of nodes i.e. V
int n = 4;
int [,]graph = {
{ 0, 10, 15, 20 },
{ 10, 0, 35, 25 },
{ 15, 35, 0, 30 },
{ 20, 25, 30, 0 }
};
// Boolean array to check if a node
// has been visited or not
bool[] v = new bool[n];
// Mark 0th node as visited
v[0] = true;
int ans = int.MaxValue;
// Find the minimum weight Hamiltonian Cycle
ans = tsp(graph, v, 0, n, 1, 0, ans);
// ans is the minimum weight Hamiltonian Cycle
Console.Write(ans);
}
}
// This code is contributed by mits
Javascript
输出:
80
时间复杂度: O(N!),对于第一个节点有 N 种可能性,对于第二个节点有 n-1 种可能性。
对于 N 个节点,时间复杂度 = N * (N – 1) * 。 . . 1 = O(N!)
辅助空间: O(N)
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。