Python中的 sympy.stats.NormalGamma()函数
借助sympy.stats.NormalGamma()方法,我们可以创建具有多元正态伽马分布的二元联合随机变量。
Syntax: sympy.stats.NormalGamma(syms, mu, lamda, alpha, beta)
Parameters:
syms: the symbol, for identifying the random variable
mu: a real number, the mean of the normal distribution
lambda: a positive integer
alpha: a positive integer
beta: a positive integer
Returns: a bivariate joint random variable with multivariate Normal gamma distribution.
示例 #1:
Python3
# import sympy, NormalGamma, density, symbols
from sympy.stats import density, NormalGamma
from sympy import symbols, pprint
y, z = symbols('y z')
# using sympy.stats.NormalGamma() method
X = NormalGamma('X', 0, 1, 2, 3)
norGammaDist = density(X)(y, z)
pprint(norGammaDist)
Python3
# import sympy, NormalGamma, density, symbols
from sympy.stats import density, NormalGamma
from sympy import symbols, pprint
y, z = symbols('y z')
# using sympy.stats.NormalGamma() method
X = NormalGamma('X', 1 / 2, 3, 4, 6)
norGammaDist = density(X)(y, z)
pprint(norGammaDist)
输出 :
2
-y *z
------
___ 3/2 -3*z 2
9*\/ 2 *z *e *e
--------------------------
____
2*\/ pi
示例 #2:
Python3
# import sympy, NormalGamma, density, symbols
from sympy.stats import density, NormalGamma
from sympy import symbols, pprint
y, z = symbols('y z')
# using sympy.stats.NormalGamma() method
X = NormalGamma('X', 1 / 2, 3, 4, 6)
norGammaDist = density(X)(y, z)
pprint(norGammaDist)
输出 :
2
-3*z*(y - 1/2)
----------------
___ 7/2 -6*z 2
108*\/ 6 *z *e *e
--------------------------------------
____
\/ pi