Tensorflow.js tf.initializers.randomNormal()函数
Tensorflow.js是谷歌开发的一个开源库,用于在浏览器或节点环境中运行机器学习模型和深度学习神经网络。它还可以帮助开发人员用 JavaScript 语言开发 ML 模型,并且可以直接在浏览器或 Node.js 中使用 ML。
tf.initializers.randomNormal()函数产生初始化为正态分布的随机值。
tf.initializers.randomNormal(arguments)
参数:
- arguments:它是一个包含下面列出的 3 个键值的对象:
- 平均值:它是要生成的随机值的平均值。
- stddev:它是要生成的随机值的标准偏差。
- 种子:它 是随机数生成器种子。
返回值:它返回tf.initializers.Initializer
示例 1:
Javascript
// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
// Initializing the .initializers.randomNormal() function
let geek = tf.initializers.randomNormal(3)
// Printing gain value
console.log(geek);
// Printing individual gain value.
console.log('\nIndividual values:\n');
console.log(geek.DEFAULT_MEAN);
console.log(geek.DEFAULT_STDDEV);
console.log(geek.mean);
console.log(geek.stddev);
Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
// Defining the input value
const inputValue = tf.input({shape:[4]});
// Initializing tf.initializers.randomNormal() function.
const funcValue = tf.initializers.randomNormal(3)
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
units: 5,
activation: 'relu',
kernelInitialize: funcValue
});
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
units: 7,
activation: 'softmax'
});
// Output
const outputValue = dense_layer_2.apply(
dense_layer_1.apply(inputValue)
);
// Creation the model.
const model = tf.model({
inputs: inputValue,
outputs: outputValue
});
// Predicting the output.
model.predict(tf.ones([2, 4])).print();
输出:
{
"DEFAULT_MEAN": 0,
"DEFAULT_STDDEV": 0.05,
"mean": 0,
"stddev": 0.05
}
Individual values:
0
0.05
0
0.05
示例 2:
Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
// Defining the input value
const inputValue = tf.input({shape:[4]});
// Initializing tf.initializers.randomNormal() function.
const funcValue = tf.initializers.randomNormal(3)
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
units: 5,
activation: 'relu',
kernelInitialize: funcValue
});
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
units: 7,
activation: 'softmax'
});
// Output
const outputValue = dense_layer_2.apply(
dense_layer_1.apply(inputValue)
);
// Creation the model.
const model = tf.model({
inputs: inputValue,
outputs: outputValue
});
// Predicting the output.
model.predict(tf.ones([2, 4])).print();
输出:
Tensor
[[0.1165049, 0.2952721, 0.1367277, 0.1689866,
0.0897676, 0.0964029, 0.0963382],
[0.1165049, 0.2952721, 0.1367277, 0.1689866,
0.0897676, 0.0964029, 0.0963382]]
参考: https ://js.tensorflow.org/api/3.6.0/#initializers.randomNormal