📌  相关文章
📜  Tensorflow.js tf.initializers.truncatedNormal()函数

📅  最后修改于: 2022-05-13 01:56:22.710000             🧑  作者: Mango

Tensorflow.js tf.initializers.truncatedNormal()函数

Tensorflow.js是谷歌开发的一个开源库,用于在浏览器或节点环境中运行机器学习模型和深度学习神经网络。它还可以帮助开发人员用 JavaScript 语言开发 ML 模型,并且可以直接在浏览器或 Node.js 中使用 ML。

tf.initializers.truncatedNormal()函数产生初始化为截断正态分布的随机值。

句法:

tf.initializers.truncatedNormal(arguments)

参数:它将一个对象作为参数,其中包含下面列出的任何键值:

  • 平均值:它是要生成的随机值的平均值。
  • stddev:它是要生成的随机值的标准偏差。
  • 种子: 是随机数生成器种子。

返回值:它返回tf.initializers.Initializer

示例 1:

Javascript
// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Initializing the .initializers.truncatedNormal()
// function
let geek = tf.initializers.truncatedNormal(13)
 
// Printing gain value
console.log(geek);
 
// Printing individual gain value
console.log('\nIndividual values:\n');
console.log(geek.DEFAULT_MEAN);
console.log(geek.DEFAULT_STDDEV);
console.log(geek.mean);
console.log(geek.stddev);


Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
 
// Defining the input value
const inputValue = tf.input({shape:[4]});
 
// Initializing tf.initializers.truncatedNormal()
// function
const funcValue = tf.initializers.truncatedNormal(11)
 
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
    units: 4,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
    units: 6,
    activation: 'softmax'
});
 
// Output
const outputValue = dense_layer_2.apply(
  dense_layer_1.apply(inputValue)
);
 
// Creation the model.
const model = tf.model(
  {
    inputs: inputValue,
    outputs: outputValue
  });
 
// Predicting the output.
model.predict(tf.ones([2, 4])).print();


输出:

{
  "DEFAULT_MEAN": 0,
  "DEFAULT_STDDEV": 0.05,
  "mean": 0,
  "stddev": 0.05
}

Individual values:

0
0.05
0
0.05

示例 2:

Javascript

// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
 
// Defining the input value
const inputValue = tf.input({shape:[4]});
 
// Initializing tf.initializers.truncatedNormal()
// function
const funcValue = tf.initializers.truncatedNormal(11)
 
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
    units: 4,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
    units: 6,
    activation: 'softmax'
});
 
// Output
const outputValue = dense_layer_2.apply(
  dense_layer_1.apply(inputValue)
);
 
// Creation the model.
const model = tf.model(
  {
    inputs: inputValue,
    outputs: outputValue
  });
 
// Predicting the output.
model.predict(tf.ones([2, 4])).print();

输出:

Tensor
    [[0.1830122, 0.1198884, 0.1611279, 
      0.2659391, 0.1296039, 0.1404286],
     [0.1830122, 0.1198884, 0.1611279, 
      0.2659391, 0.1296039, 0.1404286]]

参考: https://js.tensorflow.org/api/3.6.0/#initializers.truncatedNormal