Tensorflow.js tf.initializers.leCunNormal()函数
Tensorflow.js是谷歌开发的一个开源库,用于在浏览器或节点环境中运行机器学习模型和深度学习神经网络。它还可以帮助开发人员用 JavaScript 语言开发 ML 模型,并且可以直接在浏览器或 Node.js 中使用 ML。
tf.initializers.leCunNormal()函数从截断正态分布中提取样本,该正态分布以 stddev = sqrt(1 / fanIn) 为中心为零。请注意, fanIn是张量权重中的输入数量。
句法:
tf.initializers.leCunNormal(arguments).
参数:
- arguments:它是一个包含种子(一个数字)的对象,它是随机数生成器的种子/数字。
返回值:它返回tf.initializers.Initializer。
示例 1:
Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs"
// Initializing the .initializers.leCunNormal() function
const geek = tf.initializers.leCunNormal(3)
// Printing gain
console.log(geek);
console.log('\nIndividual values:\n');
console.log(geek.scale);
console.log(geek.mode);
console.log(geek.distribution);
Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs"
// Defining the input value
let inputValue = tf.input({ shape: [4] });
// Initializing tf.initializers.leCunNormal()
// function
let funcValue = tf.initializers.leCunNormal(7)
// Creating dense layer 1
let dense_layer_1 = tf.layers.dense({
units: 5,
activation: 'relu',
kernelInitialize: funcValue
});
// Creating dense layer 2
let dense_layer_2 = tf.layers.dense({
units: 7,
activation: 'softmax'
});
// Output
let outputValue = dense_layer_2.apply(
dense_layer_1.apply(inputValue)
);
// Creation the model.
let model = tf.model({
inputs: inputValue,
outputs: outputValue
});
// Predicting the output
let finalOutput = model.predict(tf.ones([2, 4]));
finalOutput.print();
输出:
{
"scale": 1,
"mode": "fanIn",
"distribution": "normal"
}
Individual values:
1
fanIn
normal
示例 2:
Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs"
// Defining the input value
let inputValue = tf.input({ shape: [4] });
// Initializing tf.initializers.leCunNormal()
// function
let funcValue = tf.initializers.leCunNormal(7)
// Creating dense layer 1
let dense_layer_1 = tf.layers.dense({
units: 5,
activation: 'relu',
kernelInitialize: funcValue
});
// Creating dense layer 2
let dense_layer_2 = tf.layers.dense({
units: 7,
activation: 'softmax'
});
// Output
let outputValue = dense_layer_2.apply(
dense_layer_1.apply(inputValue)
);
// Creation the model.
let model = tf.model({
inputs: inputValue,
outputs: outputValue
});
// Predicting the output
let finalOutput = model.predict(tf.ones([2, 4]));
finalOutput.print();
输出:
Tensor
[[0.0666204, 0.1171203, 0.2322821, 0.1056982,
0.2149536, 0.1846998, 0.0786256],
[0.0666204, 0.1171203, 0.2322821, 0.1056982,
0.2149536, 0.1846998, 0.0786256]]
参考: https://js.tensorflow.org/api/latest/#initializers.leCunNormal