Tensorflow.js tf.initializers.randomUniform()函数
Tensorflow.js是谷歌开发的一个开源库,用于在浏览器或节点环境中运行机器学习模型和深度学习神经网络。它还可以帮助开发人员用 JavaScript 语言开发 ML 模型,并且可以直接在浏览器或 Node.js 中使用 ML。
tf.initializers.randomUniform()函数生成初始化为均匀分布的随机值。这些值在配置的最小值和最大值之间均匀分布。
句法:
tf.initializers.randomUniform(arguments)
参数:
- arguments:它是一个包含下面列出的 3 个键值的对象:
- 平均值:它是要生成的随机值的平均值。
- stddev:它是要生成的随机值的标准偏差。
- 种子:它 是随机数生成器种子。
返回值:它返回tf.initializers.Initializer
示例 1:
Javascript
// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
// Initializing the .initializers.randomUniform() function
let geek = tf.initializers.randomUniform(5)
// Printing gain value
console.log(geek);
// Printing individual gain value.
console.log('\nIndividual values:\n');
console.log(geek.DEFAULT_MINVAL);
console.log(geek.DEFAULT_MAXVAL);
console.log(geek.minval);
console.log(geek.maxval);
Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
// Defining the input value
const inputValue = tf.input({shape:[4]});
// Initializing tf.initializers.randomUniform() function.
const funcValue = tf.initializers.randomUniform(8)
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
units: 5,
activation: 'relu',
kernelInitialize: funcValue
});
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
units: 7,
activation: 'softmax'
});
// Output
const outputValue = dense_layer_2.apply(
dense_layer_1.apply(inputValue)
);
// Creation the model.
const model = tf.model({
inputs: inputValue,
outputs: outputValue
});
// Predicting the output.
model.predict(tf.ones([2, 4])).print();
输出:
{
"DEFAULT_MINVAL": -0.05,
"DEFAULT_MAXVAL": 0.05,
"minval": -0.05,
"maxval": 0.05
}
Individual values:
-0.05
0.05
-0.05
0.05
示例 2:
Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
// Defining the input value
const inputValue = tf.input({shape:[4]});
// Initializing tf.initializers.randomUniform() function.
const funcValue = tf.initializers.randomUniform(8)
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
units: 5,
activation: 'relu',
kernelInitialize: funcValue
});
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
units: 7,
activation: 'softmax'
});
// Output
const outputValue = dense_layer_2.apply(
dense_layer_1.apply(inputValue)
);
// Creation the model.
const model = tf.model({
inputs: inputValue,
outputs: outputValue
});
// Predicting the output.
model.predict(tf.ones([2, 4])).print();
输出:
Tensor
[[0.1145501, 0.133405, 0.0640167, 0.2349582,
0.1064994, 0.0799759, 0.2665946],
[0.1145501, 0.133405, 0.0640167, 0.2349582,
0.1064994, 0.0799759, 0.2665946]]
参考: https ://js.tensorflow.org/api/3.6.0/#initializers.randomUniform