📌  相关文章
📜  Tensorflow.js tf.initializers.heUniform()函数

📅  最后修改于: 2022-05-13 01:56:48.860000             🧑  作者: Mango

Tensorflow.js tf.initializers.heUniform()函数

Tensorflow.js是谷歌开发的一个开源库,用于在浏览器或节点环境中运行机器学习模型和深度学习神经网络。它还可以帮助开发人员用 JavaScript 语言开发 ML 模型,并且可以直接在浏览器或 Node.js 中使用 ML。

tf.initializers.heUniform()函数从 [-cap, cap] 内的均匀分布中抽取样本,其中 cap 为 sqrt(6 / fan_in)。请注意, fanIn是张量权重中的输入数量。

句法:

tf.initializers.heUniform(arguments)

参数:

  • arguments:它是一个包含种子(一个数字)的对象,它是随机数生成器的种子/数字。

返回值:它返回tf.initializers.Initializer

示例 1:

Javascript
// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Initializing the .initializers.heUniform() function
const geek = tf.initializers.heUniform(7)
 
// Printing gain
console.log(geek);
console.log('\nIndividual values:\n');
console.log(geek.scale);
console.log(geek.mode);
console.log(geek.distribution);


Javascript
// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
 
// Defining the input value
const inputValue = tf.input({shape:[4]});
 
// Initializing tf.initializers.heUniform() function
const funcValue = tf.initializers.heUniform(4)
 
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
    units: 6,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
    units: 8,
    activation: 'softmax'
});
 
// Output
const outputValue = dense_layer_2.apply(
  dense_layer_1.apply(inputValue)
);
 
// Creation the model.
const model = tf.model({
    inputs: inputValue,
    outputs: outputValue
});
 
// Predicting the output.
model.predict(tf.ones([2, 4])).print();


输出:

{
    "scale": 2,
    "mode": "fanIn",
    "distribution": "uniform"
}

Individual values:

2
fanIn
uniform

示例 2:

Javascript

// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
 
// Defining the input value
const inputValue = tf.input({shape:[4]});
 
// Initializing tf.initializers.heUniform() function
const funcValue = tf.initializers.heUniform(4)
 
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
    units: 6,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
    units: 8,
    activation: 'softmax'
});
 
// Output
const outputValue = dense_layer_2.apply(
  dense_layer_1.apply(inputValue)
);
 
// Creation the model.
const model = tf.model({
    inputs: inputValue,
    outputs: outputValue
});
 
// Predicting the output.
model.predict(tf.ones([2, 4])).print();

输出:

Tensor
   [[0.2727611, 0.1405532, 0.0409708, 0.1262356, 
        0.1215546, 0.134949, 0.0845761, 0.0783997],
    [0.2727611, 0.1405532, 0.0409708, 0.1262356, 
        0.1215546, 0.134949, 0.0845761, 0.0783997]]

参考: https://js.tensorflow.org/api/latest/#initializers.heUniform