Python – 统计中的均匀离散分布
scipy.stats.randint()是一个统一的离散随机变量。它作为rv_discrete 类的实例继承自泛型方法。它使用特定于此特定发行版的详细信息来完成方法。
参数 :
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).
Results : uniform discrete random variable
代码 #1:创建统一离散随机变量
# importing library
from scipy.stats import randint
numargs = randint .numargs
a, b = 0.2, 0.8
rv = randint (a, b)
print ("RV : \n", rv)
输出 :
RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4D865848
代码#2:均匀离散变量和概率分布
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
# Random Variates
R = randint .rvs(a, b, size = 10)
print ("Random Variates : \n", R)
# PDF
x = np.linspace(randint.ppf(0.01, a, b),
randint.ppf(0.99, a, b), 10)
R = randint.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R)
输出 :
Random Variates :
[ 3 0 0 15 0 1 4 2 0 6]
Probability Distribution :
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
代码#3:图形表示。
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace(0, np.minimum(rv.dist.b, 2))
print("Distribution : \n", distribution)
plot = plt.plot(distribution, rv.ppf(distribution))
输出 :
Distribution :
[0. 0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
0.48979592 0.53061224 0.57142857 0.6122449 0.65306122 0.69387755
0.73469388 0.7755102 0.81632653 0.85714286 0.89795918 0.93877551
0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
1.2244898 1.26530612 1.30612245 1.34693878 1.3877551 1.42857143
1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
1.95918367 2. ]
代码#4:改变位置参数
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 5, 100)
# Varying positional arguments
y1 = randint.ppf(x, a, b)
y2 = randint.pmf(x, a, b)
plt.plot(x, y1, "*", x, y2, "r--")
输出 :