主成分分析(PCA)是一种统计过程,它使用正交变换将一组相关变量转换为一组不相关变量。 PCA是探索性数据分析和预测模型的机器学习中使用最广泛的工具。此外,PCA是一种无监督的统计技术,用于检查一组变量之间的相互关系。这也称为一般因素分析,其中回归确定一条最佳拟合线。
所需模块:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
代码1:
# Here we are using inbuilt dataset of scikit learn
from sklearn.datasets import load_breast_cancer
# instantiating
cancer = load_breast_cancer()
# creating dataframe
df = pd.DataFrame(cancer['data'], columns = cancer['feature_names'])
# checking head of dataframe
df.head()
输出:
代码2:
# Importing standardscalar module
from sklearn.preprocessing import StandardScaler
scalar = StandardScaler()
# fitting
scalar.fit(df)
scaled_data = scalar.transform(df)
# Importing PCA
from sklearn.decomposition import PCA
# Let's say, components = 2
pca = PCA(n_components = 2)
pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
x_pca.shape
输出:
#减少为569,2
# giving a larger plot
plt.figure(figsize =(8, 6))
plt.scatter(x_pca[:, 0], x_pca[:, 1], c = cancer['target'], cmap ='plasma')
# labeling x and y axes
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component')
输出:
# components
pca.components_
输出:
df_comp = pd.DataFrame(pca.components_, columns = cancer['feature_names'])
plt.figure(figsize =(14, 6))
# plotting heatmap
sns.heatmap(df_comp)
输出: