📜  吉尔的四阶方法求解微分方程

📅  最后修改于: 2021-04-24 14:30:39             🧑  作者: Mango

给出以下输入:

  • 一个普通的微分方程,以xy的形式定义dy / dx的值。

    \LARGE \frac{dy}{dx} = f(x, y)

  • y的初始值,即y(0)

    \LARGE y(0)= y_o

任务是在给定的点x上找到未知函数y的值,即y(x)

例子:

方法:
吉尔(Gill)方法用于查找给定x的y的近似值。下面是用来从以前的值计算下一个值y n + 1个公式。
所以:

yn+1 = value of y at (x = n + 1)
yn = value of y at (x = n)
where
  0 ≤ n ≤ (x - x0)/h
  h is step height
  xn+1 = x0 + h

计算y(n + 1)值的基本公式:

\LARGE K_{1} = h*f(x_{n}, y_{n})

\LARGE K_{2} = h*f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)

\LARGE K_{3} = h*f[x_n + \frac{1}{2}h, y_n + \frac{1}{2}(-1 + \sqrt{2})k_1 + (1 - \frac{1}{2}\sqrt{2})k_2]

\LARGE K_{4} = h*f[x_n + h, y_n - \frac{1}{2}\sqrt{2}k_2 + (1 + \frac{1}{2}\sqrt{2})k_3]

\LARGE y_{n+1} = y_{n} + \frac{1}/{6}[K_1 + (2 - \sqrt{2})K_{2} + (2 + \sqrt{2})K_3 + K_4 ] + Error Terms

该公式基本上使用当前y n计算下一个值y n + 1

  • K 1是基于间隔开始时的斜率的增量,使用y
  • K 2是基于斜率的增量,使用
    \LARGE (y + \frac{1}{2}(K_1*h))
  • K 3是基于斜率的增量,使用
    \LARGE (y + \frac{1}{2}(-1 + \sqrt{2})K_1 + (1 - \frac{1}{2}\sqrt{2})K_2)
  • K 4是基于斜率的增量,使用
    (y - \frac{1}{2}\sqrt{2}K_2 + (1 + \frac{1}{2}\sqrt{2})K_3)

该方法是四阶方法,意味着局部截断误差约为O(h 5 )

下面是上述方法的实现:

C++
// C++ program to implement Gill's method
  
#include 
using namespace std;
  
// A sample differential equation
// "dy/dx = (x - y)/2"
float dydx(float x, float y)
{
    return (x - y) / 2;
}
  
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
float Gill(float x0, float y0,
        float x, float h)
{
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
  
    // Value of K_i
    float k1, k2, k3, k4;
  
    // Initial value of y(0)
    float y = y0;
  
    // Iterate for number of iteration
    for (int i = 1; i <= n; i++) {
  
        // Apply Gill's Formulas to
        // find next value of y
  
        // Value of K1
        k1 = h * dydx(x0, y);
  
        // Value of K2
        k2 = h * dydx(x0 + 0.5 * h,
                    y + 0.5 * k1);
  
        // Value of K3
        k3 = h * dydx(x0 + 0.5 * h,
                    y + 0.5 * (-1 + sqrt(2)) * k1
                        + k2 * (1 - 0.5 * sqrt(2)));
  
        // Value of K4
        k4 = h * dydx(x0 + h,
                    y - (0.5 * sqrt(2)) * k2
                        + k3 * (1 + 0.5 * sqrt(2)));
  
        // Find the next value of y(n+1)
        // using y(n) and values of K in
        // the above steps
        y = y + (1.0 / 6) * (k1 + (2 - sqrt(2)) * k2 
                            + (2 + sqrt(2)) * k3 + k4);
  
        // Update next value of x
        x0 = x0 + h;
    }
  
    // Return the final value of dy/dx
    return y;
}
  
// Driver Code
int main()
{
    float x0 = 0, y = 3.0,
        x = 5.0, h = 0.2;
  
    printf("y(x) = %.6f",
        Gill(x0, y, x, h));
    return 0;
}


Java
// Java program to implement Gill's method
class GFG{
  
// A sample differential equation
// "dy/dx = (x - y)/2"
static double dydx(double x, double y)
{
    return (x - y) / 2;
}
  
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
static double Gill(double x0, double y0,
                   double x, double h)
{
      
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
  
    // Value of K_i
    double k1, k2, k3, k4;
  
    // Initial value of y(0)
    double y = y0;
  
    // Iterate for number of iteration
    for(int i = 1; i <= n; i++)
    {
          
       // Apply Gill's Formulas to
       // find next value of y
         
       // Value of K1
       k1 = h * dydx(x0, y);
         
       // Value of K2
       k2 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * k1);
         
       // Value of K3
       k3 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * (-1 + Math.sqrt(2)) *
                     k1 + k2 * (1 - 0.5 * Math.sqrt(2)));
         
       // Value of K4
       k4 = h * dydx(x0 + h,
                      y - (0.5 * Math.sqrt(2)) *
                     k2 + k3 * (1 + 0.5 * Math.sqrt(2)));
         
       // Find the next value of y(n+1)
       // using y(n) and values of K in
       // the above steps
       y = y + (1.0 / 6) * (k1 + (2 - Math.sqrt(2)) * 
                            k2 + (2 + Math.sqrt(2)) *
                            k3 + k4);
         
       // Update next value of x
       x0 = x0 + h;
    }
  
    // Return the final value of dy/dx
    return y;
}
  
// Driver Code
public static void main(String[] args)
{
    double x0 = 0, y = 3.0,
            x = 5.0, h = 0.2;
  
    System.out.printf("y(x) = %.6f", Gill(x0, y, x, h));
}
}
  
// This code is contributed by Amit Katiyar


Python3
# Python3 program to implement Gill's method
from math import sqrt
  
# A sample differential equation
# "dy/dx = (x - y)/2"
def dydx(x, y):
    return (x - y) / 2
  
# Finds value of y for a given x
# using step size h and initial
# value y0 at x0
def Gill(x0, y0, x, h):
      
    # Count number of iterations
    # using step size or height h
    n = ((x - x0) / h)
  
    # Initial value of y(0)
    y = y0
  
    # Iterate for number of iteration
    for i in range(1, int(n + 1), 1):
          
        # Apply Gill's Formulas to
        # find next value of y
  
        # Value of K1
        k1 = h * dydx(x0, y)
  
        # Value of K2
        k2 = h * dydx(x0 + 0.5 * h, 
                       y + 0.5 * k1)
  
        # Value of K3
        k3 = h * dydx(x0 + 0.5 * h,
                       y + 0.5 * (-1 + sqrt(2)) * 
                      k1 + k2 * (1 - 0.5 * sqrt(2)))
  
        # Value of K4
        k4 = h * dydx(x0 + h, y - (0.5 * sqrt(2)) *
                    k2 + k3 * (1 + 0.5 * sqrt(2)))
  
        # Find the next value of y(n+1)
        # using y(n) and values of K in
        # the above steps
        y = y + (1 / 6) * (k1 + (2 - sqrt(2)) * 
                           k2 + (2 + sqrt(2)) *
                           k3 + k4)
  
        # Update next value of x
        x0 = x0 + h
  
    # Return the final value of dy/dx
    return y
  
# Driver Code
if __name__ == '__main__':
      
    x0 = 0
    y = 3.0
    x = 5.0
    h = 0.2
  
    print("y(x) =", round(Gill(x0, y, x, h), 6))
  
# This code is contributed by Surendra_Gangwar


C#
// C# program to implement Gill's method
using System;
  
class GFG{
   
// A sample differential equation
// "dy/dx = (x - y)/2"
static double dydx(double x, double y)
{
    return (x - y) / 2;
}
   
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
static double Gill(double x0, double y0,
                   double x, double h)
{
       
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
   
    // Value of K_i
    double k1, k2, k3, k4;
   
    // Initial value of y(0)
    double y = y0;
   
    // Iterate for number of iteration
    for(int i = 1; i <= n; i++)
    {
           
       // Apply Gill's Formulas to
       // find next value of y
          
       // Value of K1
       k1 = h * dydx(x0, y);
          
       // Value of K2
       k2 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * k1);
          
       // Value of K3
       k3 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * (-1 + Math.Sqrt(2)) *
                     k1 + k2 * (1 - 0.5 * Math.Sqrt(2)));
          
       // Value of K4
       k4 = h * dydx(x0 + h,
                      y - (0.5 * Math.Sqrt(2)) *
                     k2 + k3 * (1 + 0.5 * Math.Sqrt(2)));
          
       // Find the next value of y(n+1)
       // using y(n) and values of K in
       // the above steps
       y = y + (1.0 / 6) * (k1 + (2 - Math.Sqrt(2)) * 
                            k2 + (2 + Math.Sqrt(2)) *
                            k3 + k4);
          
       // Update next value of x
       x0 = x0 + h;
    }
   
    // Return the final value of dy/dx
    return y;
}
   
// Driver Code
public static void Main(String[] args)
{
    double x0 = 0, y = 3.0,
            x = 5.0, h = 0.2;
   
    Console.Write("y(x) = {0:F6}", Gill(x0, y, x, h));
}
}
  
// This code is contributed by Amit Katiyar


输出:
y(x) = 3.410426