📌  相关文章
📜  用于计算数组中的倒数的 C++ 程序 - 集 1(使用合并排序)

📅  最后修改于: 2022-05-13 01:56:07.084000             🧑  作者: Mango

用于计算数组中的倒数的 C++ 程序 - 集 1(使用合并排序)

数组的反转计数表示 - 数组距离排序多远(或接近)。如果数组已经排序,则反转计数为 0,但如果数组以相反的顺序排序,则反转计数为最大值。
形式上来说,如果 a[i] > a[j] 并且 i < j 两个元素 a[i] 和 a[j] 形成一个反转
例子:

Input: arr[] = {8, 4, 2, 1}
Output: 6
Explanation: Given array has six inversions:
(8, 4), (4, 2), (8, 2), (8, 1), (4, 1), (2, 1).

Input: arr[] = {3, 1, 2}
Output: 2
Explanation: Given array has two inversions:
(3, 1), (3, 2) 

方法1(简单):

方法:遍历数组,对于每个索引,找到数组右侧的较小元素的数量。这可以使用嵌套循环来完成。将数组中所有索引的计数相加并打印总和。

算法:

  1. 从头到尾遍历数组
  2. 对于每个元素,使用另一个循环找到小于当前数字的元素的计数,直到该索引。
  3. 总结每个索引的反转计数。
  4. 打印反转计数。

执行:

C++
// C++ program to Count Inversions
// in an array
#include 
using namespace std;
  
int getInvCount(int arr[], int n)
{
    int inv_count = 0;
    for (int i = 0; i < n - 1; i++)
        for (int j = i + 1; j < n; j++)
            if (arr[i] > arr[j])
                inv_count++;
  
    return inv_count;
}
  
// Driver Code
int main()
{
    int arr[] = {1, 20, 6, 4, 5};
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << " Number of inversions are " << 
              getInvCount(arr, n);
    return 0;
}
// This code is contributed by Akanksha Rai


C++
// C++ program to Count Inversions in 
// an array using Merge Sort
#include 
using namespace std;
  
int _mergeSort(int arr[], int temp[], 
               int left, int right);
int merge(int arr[], int temp[], 
          int left, int mid, int right);
  
/* This function sorts the input 
   array and returns the number 
   of inversions in the array */
int mergeSort(int arr[], int array_size)
{
    int temp[array_size];
    return _mergeSort(arr, temp, 0, 
                      array_size - 1);
}
  
/* An auxiliary recursive function that 
   sorts the input array and returns the 
   number of inversions in the array. */
int _mergeSort(int arr[], int temp[], 
               int left, int right)
{
    int mid, inv_count = 0;
    if (right > left) 
    {
        /* Divide the array into two parts and 
           call _mergeSortAndCountInv() for 
           each of the parts */
        mid = (right + left) / 2;
  
        /* Inversion count will be sum of inversions 
           in left-part, right-part and number of 
           inversions in merging */
        inv_count += _mergeSort(arr, temp, 
                                left, mid);
        inv_count += _mergeSort(arr, temp, 
                                mid + 1, right);
  
        // Merge the two parts
        inv_count += merge(arr, temp, 
                           left, mid + 1, right);
    }
    return inv_count;
}
  
/* This funt merges two sorted arrays and 
   returns inversion count in the arrays.*/
int merge(int arr[], int temp[], 
          int left, int mid, int right)
{
    int i, j, k;
    int inv_count = 0;
  
    // i is index for left subarray
    i = left;
  
    // j is index for right subarray 
    j = mid; 
  
    // k is index for resultant merged 
    // subarray
    k = left; 
  
    while ((i <= mid - 1) && 
           (j <= right)) 
    {
        if (arr[i] <= arr[j]) 
        {
            temp[k++] = arr[i++];
        }
        else 
        {
            temp[k++] = arr[j++];
  
            /* This is tricky -- see above 
               explanation/diagram for merge()*/
            inv_count = inv_count + (mid - i);
        }
    }
  
    /* Copy the remaining elements of left 
       subarray (if there are any) to temp*/
    while (i <= mid - 1)
        temp[k++] = arr[i++];
  
    /* Copy the remaining elements of right 
       subarray (if there are any) to temp*/
    while (j <= right)
        temp[k++] = arr[j++];
  
    /* Copy back the merged elements to 
       original array*/
    for (i = left; i <= right; i++)
        arr[i] = temp[i];
  
    return inv_count;
}
  
// Driver code
int main()
{
    int arr[] = {1, 20, 6, 4, 5};
    int n = sizeof(arr) / sizeof(arr[0]);
    int ans = mergeSort(arr, n);
    cout << " Number of inversions are " << ans;
    return 0;
}
  
// This is code is contributed by rathbhupendra


输出:

Number of inversions are 5

复杂性分析:

  • 时间复杂度: O(n^2),从头到尾遍历数组需要两个嵌套循环,所以时间复杂度是O(n^2)
  • 空间复杂度 O(1),不需要额外的空间。

方法2(增强合并排序):

方法:
假设数组左半边和右半边的反转次数(设为inv1和inv2); Inv1 + Inv2 中没有考虑哪些类型的反转?答案是——在合并步骤中需要计算的反转。因此,要获得需要添加的反转总数是左子数组、右子数组和merge()中的反转数。

inv_count1

如何获得合并()中的反转次数?
在合并过程中,让 i 用于索引左子数组, j 用于索引右子数组。在 merge() 的任何步骤中,如果 a[i] 大于 a[j],则存在 (mid – i) 反转。因为左右子数组是排序的,所以左子数组中的所有剩余元素 (a[i+1], a[i+2] ... a[mid]) 将大于 a[j]

inv_count2

完整的图片:

inv_count3

算法:

  1. 这个想法类似于归并排序,在每个步骤中将数组分成相等或几乎相等的两半,直到达到基本情况。
  2. 创建一个函数merge,当数组的两半合并时计算反转次数,创建两个索引i和j,i是前半部分的索引,j是后半部分的索引。如果 a[i] 大于 a[j],则存在 (mid – i) 反转。因为左右子数组是排序的,所以左子数组中的所有剩余元素 (a[i+1], a[i+2] ... a[mid]) 将大于 a[j]。
  3. 创建一个递归函数,将数组分成两半,并通过将前半部分的反转次数、后半部分的反转次数和合并两者的反转次数相加来找到答案。
  4. 递归的基本情况是给定的一半中只有一个元素。
  5. 打印答案

执行:

C++

// C++ program to Count Inversions in 
// an array using Merge Sort
#include 
using namespace std;
  
int _mergeSort(int arr[], int temp[], 
               int left, int right);
int merge(int arr[], int temp[], 
          int left, int mid, int right);
  
/* This function sorts the input 
   array and returns the number 
   of inversions in the array */
int mergeSort(int arr[], int array_size)
{
    int temp[array_size];
    return _mergeSort(arr, temp, 0, 
                      array_size - 1);
}
  
/* An auxiliary recursive function that 
   sorts the input array and returns the 
   number of inversions in the array. */
int _mergeSort(int arr[], int temp[], 
               int left, int right)
{
    int mid, inv_count = 0;
    if (right > left) 
    {
        /* Divide the array into two parts and 
           call _mergeSortAndCountInv() for 
           each of the parts */
        mid = (right + left) / 2;
  
        /* Inversion count will be sum of inversions 
           in left-part, right-part and number of 
           inversions in merging */
        inv_count += _mergeSort(arr, temp, 
                                left, mid);
        inv_count += _mergeSort(arr, temp, 
                                mid + 1, right);
  
        // Merge the two parts
        inv_count += merge(arr, temp, 
                           left, mid + 1, right);
    }
    return inv_count;
}
  
/* This funt merges two sorted arrays and 
   returns inversion count in the arrays.*/
int merge(int arr[], int temp[], 
          int left, int mid, int right)
{
    int i, j, k;
    int inv_count = 0;
  
    // i is index for left subarray
    i = left;
  
    // j is index for right subarray 
    j = mid; 
  
    // k is index for resultant merged 
    // subarray
    k = left; 
  
    while ((i <= mid - 1) && 
           (j <= right)) 
    {
        if (arr[i] <= arr[j]) 
        {
            temp[k++] = arr[i++];
        }
        else 
        {
            temp[k++] = arr[j++];
  
            /* This is tricky -- see above 
               explanation/diagram for merge()*/
            inv_count = inv_count + (mid - i);
        }
    }
  
    /* Copy the remaining elements of left 
       subarray (if there are any) to temp*/
    while (i <= mid - 1)
        temp[k++] = arr[i++];
  
    /* Copy the remaining elements of right 
       subarray (if there are any) to temp*/
    while (j <= right)
        temp[k++] = arr[j++];
  
    /* Copy back the merged elements to 
       original array*/
    for (i = left; i <= right; i++)
        arr[i] = temp[i];
  
    return inv_count;
}
  
// Driver code
int main()
{
    int arr[] = {1, 20, 6, 4, 5};
    int n = sizeof(arr) / sizeof(arr[0]);
    int ans = mergeSort(arr, n);
    cout << " Number of inversions are " << ans;
    return 0;
}
  
// This is code is contributed by rathbhupendra

输出:

Number of inversions are 5

复杂性分析:

  • 时间复杂度: O(n log n),使用的算法是分治法,所以每一层都需要遍历一次全数组,并且有log n层,所以时间复杂度是O(n log n)。
  • 空间复杂度 O(n),临时数组。

请注意,上面的代码修改(或排序)输入数组。如果我们只想计算反转,我们需要创建原始数组的副本并在副本上调用 mergeSort() 以保留原始数组的顺序。