📅  最后修改于: 2023-12-03 15:40:38.499000             🧑  作者: Mango
在计算机科学中,正则表达式(regular expression)是一种用于描述特定模式的表达式。正则表达式通常用于字符串匹配、文本搜索和替换等操作。而有限自动机(finite automaton)是一种数学模型,它能够模拟一个特定的有限状态机(finite state machine)。
在计算机科学中,正则表达式经常用于描述一组模式,而有限自动机常用于实现这些模式。因此,将正则表达式转换为有限自动机是一项重要的任务。
正则表达式是由普通字符和元字符(metacharacters)组成的字符串,它们代表了特殊的含义。正则表达式的基本元素包括:
字符集:用方括号([])表示。字符集用于匹配一个字符,字符集内部可以包含多个字符。例如,[abcd]表示匹配字符a、b、c或d。
特殊字符:包括转义字符、点号(.)和星号(*)等。这些字符有特殊的含义,可以匹配多个字符。
量词:用于表示一个模式的重复次数。常用的量词有问号(?)、星号(*)和加号(+)。
有限自动机是一种形式化模型,用于描述有限状态机。有限自动机包含一个有限的状态集合、一个输入字符集和一个状态转换函数。当有限自动机接收到一个输入字符时,它会根据当前状态和输入字符进行转换,然后进入新的状态。
在有限自动机中,每个状态都有一个开始状态和一个终止状态。当有限自动机到达终止状态时,它会停止对输入字符的处理,并判断输入字符串是否符合模式。
将正则表达式转换为有限自动机的过程涉及多个步骤,包括正则表达式解析、NFA(非确定有限自动机)构造、DFA(确定有限自动机)构造和最小化等。
以下是将正则表达式转换为NFA的简单算法:
对正则表达式进行解析,将其转换为语法树。
从根节点出发,递归遍历整个语法树,并将每个节点的类型和子节点转换为NFA。
如果节点是连接符(即叶子节点不是或节点),则将其左右子节点的NFA进行连接操作,生成一个新的NFA。
如果节点是或符号(|),则将其左右子节点的NFA进行或操作,生成一个新的NFA。
如果节点是星号(*),则对其子节点的NFA进行克林闭包(Kleene Closure)操作,生成一个新的NFA。
如果节点是加号(+),则对其子节点的NFA进行正闭包(Positive Closure)操作,生成一个新的NFA。
如果节点是问号(?),则对其子节点的NFA进行可选操作,生成一个新的NFA。
最终,整个语法树最终生成的NFA就是正则表达式对应的NFA。
以下是将NFA转换为DFA的简单算法:
使用NFA的起始状态创建一个新的DFA状态。
对于每个DFA状态和每个输入字符,计算其对应的NFA状态集合。
如果NFA状态集合对应的DFA状态不存在,则创建一个新的DFA状态,用该集合进行初始化。
在DFA状态中,按输入字符和对应的NFA状态计算下一个状态。
对于每个新的DFA状态,对其包含的NFA状态集合进行转换,计算对应的新的DFA状态。
最终得到的DFA包含一个起始状态和多个结束状态,其中每个状态对应一个NFA状态集合。
以下是最小化DFA的算法:
对于每个状态对,计算其可达性及等价性。
设置初始分组为非结束状态和结束状态,然后对于每个分组中的状态对,计算其是否是等价状态。
如果两个状态是等价状态,则将它们分到相同的分组中。
如果分组不再改变,则停止迭代。
最终得到的分组包含了所有的等价状态,每个分组对应一个最小化的DFA状态。
以下是使用Python实现将正则表达式转换为NFA的代码片段:
class NFA:
def __init__(self, symbol=None, edges=None, accept=False):
self.symbol = symbol
self.edges = edges or []
self.accept = accept
def set_accept(self):
self.accept = True
def add_edge(self, symbol, to):
self.edges.append((symbol, to))
def epsilon_closure(self):
states = set()
def traverse(state):
if state in states:
return
states.add(state)
for symbol, to in self.edges:
if symbol is None and to == state:
traverse(to)
traverse(self)
return states
@staticmethod
def concatenate(first, second):
for state in first.accept_states():
state.add_edge(None, second)
first.clear_accept_states()
return first
def accept_states(self):
return [state for state in self if state.accept]
def clear_accept_states(self):
for state in self:
state.accept = False
def __iter__(self):
todo = [self]
done = set()
while todo:
state = todo.pop()
if state in done:
continue
done.add(state)
yield state
for symbol, to in state.edges:
if to not in done and to not in todo:
todo.append(to)
@staticmethod
def compile(pattern):
stack = []
for symbol in pattern:
if symbol == "|":
y, x = stack.pop(), stack.pop()
state = NFA(None, [(None, x), (None, y)], accept=False)
stack.append(state)
elif symbol == ".":
y, x = stack.pop(), stack.pop()
x = NFA.concatenate(x, y)
stack.append(x)
elif symbol == "*":
x = stack.pop()
state = NFA(None, [(None, x)], accept=False)
x.add_edge(None, state)
state.add_edge(None, x)
state.set_accept()
stack.append(state)
elif symbol == "+":
x = stack.pop()
state = NFA(None, [(None, x)], accept=False)
x.add_edge(None, state)
state.set_accept()
stack.append(x)
elif symbol == "?":
x = stack.pop()
state = NFA(None, [(None, x)], accept=True)
stack.append(state)
else:
state = NFA(symbol, accept=False)
state.add_edge(symbol, NFA(accept=True))
stack.append(state)
nfa = NFA.concatenate(*stack)
return nfa
以下是使用Python实现将NFA转换为DFA的代码片段:
class DFA:
def __init__(self, start_state, accepted_states):
self.start_state = start_state
self.accepted_states = set(accepted_states)
self.transitions = {}
self.current_state = start_state
def add_transition(self, from_state, symbol, to_state):
self.transitions.setdefault((from_state, symbol), set()).add(to_state)
def set_start_state(self, state):
self.current_state = self.start_state = state
def feed(self, symbol):
to_states = self.transitions.get((self.current_state, symbol))
if not to_states:
raise Exception("Invalid input: " + symbol)
self.current_state = next(iter(to_states))
def is_accepted(self):
return self.current_state in self.accepted_states
@staticmethod
def compile(nfa):
start_state = frozenset(nfa.epsilon_closure())
transitions = {}
accepted_states = set()
def traverse(state):
state_id = frozenset(state)
if state_id in transitions:
return
transitions[state_id] = {}
for symbol in range(256):
to_states = set()
for from_state in state:
for symbol2, to_state in from_state.edges:
if symbol == symbol2:
to_states.add(to_state)
if to_states:
to_state = frozenset.union(*(to.epsilon_closure() for to in to_states))
transitions[state_id][symbol] = to_state
if any(to.accept for to in to_states):
accepted_states.add(to_state)
traverse(to_state)
traverse(start_state)
dfa = DFA(start_state, accepted_states)
for from_state_id, transitions in transitions.items():
for symbol, to_state_id in transitions.items():
dfa.add_transition(from_state_id, symbol, to_state_id)
return dfa
以下是使用Python实现将DFA最小化的代码片段:
class MinDFA:
def __init__(self, dfa):
self.nfa = dfa
self.groups = [dfa.accepted_states, set(dfa) - dfa.accepted_states]
self.group_states = [set(), set()]
for state in dfa:
self.group_states[dfa.is_accepted()].add(state)
self.transitions = {}
self.accepted_states = set()
def create_group(self, states, second_group=False):
new_group = set()
for state in states:
if state in self.group_states[second_group]:
new_group.add(state)
self.group_states[second_group].remove(state)
assert state not in self.group_states[second_group]
self.groups.append(new_group)
self.group_states.append(new_group)
return len(self.groups) - 1
def minimize(self):
todo = [(0, 1)]
done = set()
new_transitions = {}
def find_group(state):
idx = bisect_left([frozenset(g) for g in self.groups], state)
return idx if idx < len(self.groups) and state == self.groups[idx] else None
while todo:
idx1, idx2 = todo.pop()
if idx2 < idx1:
idx1, idx2 = idx2, idx1
if (idx1, idx2) in done:
continue
done.add((idx1, idx2))
for symbol in range(256):
transitions1 = {state: to_state for (state, to_state) in self.nfa.transitions.items()
if state[0] in self.groups[idx1] and state[1] == symbol and to_state in self.groups[
idx2]}
transitions2 = {state: to_state for (state, to_state) in self.nfa.transitions.items()
if state[0] in self.groups[idx2] and state[1] == symbol and to_state in self.groups[
idx1]}
if not transitions1 and not transitions2:
continue
g1, g2 = None, None
if transitions1:
g1 = find_group(transitions1.keys())
if g1 is None:
g1 = self.create_group(transitions1.keys())
todo.append((idx1, g1))
todo.append((g1, idx2))
if transitions2:
g2 = find_group(transitions2.keys())
if g2 is None:
g2 = self.create_group(transitions2.keys())
todo.append((idx1, g2))
todo.append((g2, idx2))
if not transitions1 or not transitions2:
new_transitions[(idx1, idx2, symbol)] = (g1 or idx1, g2 or idx2)
elif g1 == g2:
new_transitions[(idx1, idx2, symbol)] = (g1, g2)
elif g1 is None or g2 is None:
new_transitions[(idx1, idx2, symbol)] = (g1 or g2, g1 or g2)
else:
new_transitions[(idx1, idx2, symbol)] = (g1, g2)
for i in range(len(self.groups)):
if any(state.accept for state in self.groups[i]):
self.accepted_states.add(i)
self.transitions = {}
for (group1, group2, symbol), (to_group1, to_group2) in new_transitions.items():
self.transitions.setdefault((to_group1, to_group2), {})[symbol] = (group1, group2)
def simulate(self, s):
s = s.encode('ascii')
current_state = 0
for c in s:
current_state, _ = self.transitions.get((current_state, None), {}).get(c, (None, None))
if current_state is None:
return False
return current_state in self.accepted_states