问题1.平行四边形ABCD和矩形ABEF位于相同的基础AB上,并具有相等的面积。显示平行四边形的周长大于矩形的周长。
解决方案:
Given: ||gm ABCD and rectangle ABEF lie on the same base AB.
ar(ABCD)=a(ABEF)
to prove: Perimeter of ||gm ABCD> perimeter of rectangle ABEF
AB+BC+CD+DA>AB+BE+EF+FA
Proof:
AB=CD —-[opposite sides of ||gm and rectangle are equal]
AB=EF —-[opposite sides of ||gm and rectangle are equal]
→CD=EF
Adding AB to both sides
CD+AB=EF+AB ———1
Here BC>BF ———[hypotenuse is always greater than other sides]
AD>AF ———[hypotenuse is always greater than other sides]
Adding them:
BC+AD>BE+AF —————2
Adding 1 and 2
CD+AB+BC+AD > EF+AB+BE+AF
BC+AD>BE+AF
问题2。在图中,D和E是BC上的两个点,因此BD = DE = EC。证明ar(ABD)= ar(ADE)= ar(AEC)。
解决方案:
Given: In ∆ABC,D and F are two points on BC such that BD=DE=EC
To prove:
Construction: Draw AM ⊥ BC
ar.(ABD)=1/2BD*AM ———1
ar.(ADE)=1/2*DE*AM
=1/2*BD*AM ——-2
Ar.(AEC)=1/2*EC*MA
=1/2*BD*AM ————3
From 1 ,2 and 3
ar.(ABD)=ar.(ADE)=ar.(AEC)
问题3.在图中,ABCD,DCFE和ABFE是平行四边形。证明ar(ADE)= ar(BCF)
解决方案:
Given: ||gm ABCD, DCFE, and ABFE
To prove: ar.(ADE)=ar.(BCF)
Proof: In ∆ADE and ∆BCF
AD = BC ——[opposite sides of ||gm ABCD]
DE = CF ——[opposite sides of ||gm DCFE]
AE = BF ——[opposite sides of ||gm ABFE]
∴∆ADE ≅ ∆BCF (S.S.S congruence)
→ar.(ADE) = ar.(BCF) ——-[congruent triangles have equal in area]
问题4。在图中,ABCD是一个平行四边形,并且BC产生到点Q,使得AD = CQ。如果AQ在P处与DC相交,则表明ar(BPC)= ar(DPQ)。 [提示:加入AC。]
解决方案:
Given: In fig. ABCD is a ||gm AD=CQ
To prove: ar.(BPC)=ar.()
Construction: Join AC.
Proof: ACQD will be ||gm (∴AD=CQ, AD ||gm CQ)
In ∆APC and ∆QPD
AC=QD [opposite sides of ||gm]
∠ 3=∠ 4 [altitude interior angles]
∴∆APC≅∆QPD [A.S.A congruence]
→ar.(APC)=ar.(BPC) [because both lie on the same base PC and between same ||lines PC and AB]
From 1 and 2
ar.(BPC)=ar.(DPQ)
问题5。在图中,ABC和BDE是两个等边三角形,使得D是BC的中点。如果AE在F处与BC相交,则表明
(i)ar(BDE)= 14 ar(ABC)
(ii)ar(BDE)= 12 ar(BAE)
(iii)ar(ABC)= 2 ar(BEC)
(iv)ar(BFE)= ar(AFD)
(v)ar(BFE)= 2 ar(FED)
(vi)ar(FED)= 18 ar(AFC)
[提示:加入EC和AD。显示BE || AC和DE || AB等]
解决方案:
i) Given: ABC and BDE are equilateral triangles D is mid point of BC i.e. BD=DC
To prove:
Proof: Let AB=x=AC=BC
Then BD=x/2=BE=DE
ar.(ABC)=√3/4×2
ar.(BDE)=√3/4*(2/2)2
=√3/4*x2/4
=1/4*√3/4*x2
ar.(BDE)=1/4 ar.(ABC)
ii) to prove; ar.(BDE)=1/2 ar.(BAE)
Construction: Join EC
ED is median of ∆BFC
ar.(BDE)=1/2 ar.(BEC) ———–1
∠1=∠2=60° [altitude interior angles]
→BE||AC
AR.(BEC)=ar.(BEA) ————2[both lie on the same base BE and AC between same||lines BE and AC]
Taking 1
ar.(BDE)=1/2 ar.(BAE) [from 2]
iii) To prove: ar.(ABC)=2ar.(BEC)
From i
ar.(BDE)=1/4 ar.(ABC)
from ii
ar.(BDE)=1/2 ar.(BAE)
From I and ii
¼ ar(ABC)=1/2ar.(BAE)
Ar.(ABC)=1/24 ar.(BAE)
=2ar.(BAE)
Ar.(ABC)=2ar.(BFC) [ar.(BAE)=ar.(BEC) from ii]
iv) To show ar (BFE) = ar (AFD)
Construction: Join AD.
Proof: ∠3= ∠4=60° ——–[angles of equilateral tringles]
Also they are alternate interior angle
∴AE||ED
ar(EDB)=ar(EDA) ——-[both lie on the same base ED and Between same || lines ED and AB]
Subtracting ar(EDF) from both sides
ar(EDB)-ar(EDF)=ar.(EDA)-ar.(EDF)
v) To show :ar.(BFE)=2ar.(FED)
Solution: In ∆ADB
AD2=AB2+BD2
=x2-(x/2)2
=x2-(x2/4)
=3x2/4
AD=√3x2/4
=√3x/4
ar.(AFD)=1/2*ED*AD
=1/2*ED*(√3X)/2 ————-1
Construction: Draw EL⊥ BD
→angle is midpoint of BD
In ∆ELD
EL2=ED2-LD2
=(x/2)2-(x/4)2
=x2/4-x2/16
=4x2-x2/16
=3x2/16
EL=√3/10 X2
=√3/4 x
In ∆ADB
ar(FED)=1/2*FD*EL
=1/2*FD*√3/4 x
=1/2*FD*√3/xx *1/2
ar.(FED)=ar.(AFD)
2ar.(FED)=ar.(BFE) ——–[in part (iv) we prove ar(AFD=ar.(BFE)]
(vi) ar.(FED=1/8ar.(AFC))
Solution: ar(BDE)=1/4ar.(ABC)
ar.(BFE)+ar.(FED)=1/4ar.2*(ADC)
2ar.(FED)+ar(FED)=1/2ar.(AFC-1/2ar.(AFD))
3ar.(FED)=1/2ar.(AFC-AFD)
3ar.(FED)=1/2ar(AFC)-1/2ar.(AED)
3ar.(FED)=1/2ar.(AFC)-1/2 ar.*2(FED) ————[FROM (iv) and (v)]
3ar(FED)=1/2 ar.(AFC)-ar.(FED)
3ar.(FED)+ar.(FED)=1/2ar.(AFC)
4ar.(FED)=1/2ar.(AFC)
ar.(FED)=1/2*4 ar.(AFC)
ar.(FED)=1/8 ar.(AFC)
问题6.四边形ABCD的对角AC和BD在P处相交。证明ar(APB)×ar(CPD)= ar(APD)×ar(BPC)。到BD。]
解决方案:
Given: ABCD is quadrilateral. Diagonals AC and BD intersects at P.
To show: ar (APB) × ar (CPD) = ar (APD) × ar (BPC)
Construction: Draw AM ⊥BD &CN ⊥BD
L.H.S. ar.(APB)*(LPD)
½*PB*AM*1/2*DP*CN ————-1
¼*PB*AM*DP*LN
R.H.S. ar.(APD)*ar.(BPC)
½*DP*AM*1/2*BP*CN
¼*DP*AM*BP*CN
¼*PB*AM*DP*CN ————-2
From 1 and 2
L.H.S=R.H.S
∴ar.(APB)*ar.(CPD)=ar.(APD)*ar.(BPC)
问题7. P和Q分别是三角形ABC的边AB和BC的中点,R是AP的中点,表明
(i)ar(PRQ)= 12 ar(ARC)
(ii)ar(RQC)= 38 ar(ABC)
(iii)ar(PBQ)= ar(ARC)
解决方案:
i) Given: In ∆ABC, P is midpoint of AB, Q is midpoint of BC, R is midpoint of AP
To show: ar (PRQ) = 12 ar (ARC)
Construction: Join AQ and PC
Solution : ar.(APQ) ———[∴QR is median of ∆APQ]
=½*1/2ar.(ABQ) ———[∴QP is median of ∆ABQ]
=1/2*1/2*1/2ar.(ABC) ———[∴AQ is median of ∆ABC]
=1/8ar.(ABC) ———-1
ar.(ARC)=1/2(APC) ——–[∴CR is median of ∆APC]
=1/2*1/2ar.(ABC) ———-[∴CP is median of ∆ABC]
=1/4ar.(ABC) ————2
Taking 1
ar.(PRQ)=1/8ar.(ABC)
=1/2*1/4ar.(ABC) ———-[from 2]
ii) ar.(RQC)=3/8ar.(ABC)
solution : ar(ABC)+ar.(ARQ)-ar(ARC) ——-1
ar(AQC)=1/2(ABC) [∴AQ is median of ∆ABC]
ar.(ABC)=1/2ar.(APQ) [∴QR is median of ∆APQ]
=1/2ar.(ABQ) [∴QP is median of ∆ABQ]
=1/2*1/2*1/2ar.(ABC) [∴AQ is median of ∆ABC]
=1/8ar.(ABC)
ar.(ARC)=1/2ar.(APC) [∴CR is median of ∆APC]
=1/2ar.(ABC) [∴CP is median of ∆ABC]
ar.(RQC)=ar.(AQC)+ar.(ARQ)+ar.(ARC)
=1/2ar.(ABC)+1/8ar.(ABC)-1/4ar.(ABC)
=(1/2+1/8-1/4)ar.(ABC)
=(4+1-2/8)ar.(ABC)
=(5-2/8)ar.(ABC)
=3/8ar.(ABC)
iii) To show: ar.(PBQ)=ar.(ARC)
ar(PBQ)=1/2ar.(ABQ) [∴∆ABQ , QP is median]
=1/2*1/2ar.(ABC) [∴∆ABC , AQ is median]
=1/4ar.(ABC) ———1
ar.(ARC)=1/2ar.(APC) [∴∆APC , CR is median]
=1/2*1/2ar.(ABC) [∴∆ABC , CP is median]
=1/4ar.(ABC) ——–2
Form I and 2
ar.(PBQ)=ar.(ARC)
问题8.在图9.34中,ABC是与A成直角的直角三角形。BCED,ACFG和ABMN分别是BC,CA和AB侧的正方形。线段AX⊥DE在Y与BC相遇。
显示:
∆MBC ≅∆ABD
(ii)ar(BYXD)= 2 ar(MBC)
(iii)ar(BYXD)= ar(ABMN)(iv)∆FCB ≅∆ACE
(v)ar(CYXE)= 2 ar(FCB)
(vi)ar(CYXE)= ar(ACFG)
(vii)ar(BCED)= ar(ABMN)+ ar(ACFG)
注意:结果(vii)是毕达哥拉斯的著名定理。您将在X类中学习该定理的更简单证明。
解决方案:
Given: ∆ABC, right angled at A. BCED,ACFG,ABMN are squares at Y.
i). to prove: ∆MBC ≅∆ABD
solution : In ∆MBC and ∆ABD
MB=AB [∴ABMN is an square ]
BC=BD [∴BCED is an square]
∠MBC=∠ABD [∠MBA=∠CBO=90°
∠MBA= +∠CBD+∠ABC
∴∠MBC=∠ABD]
∆MBC≅∆ABD [S.A.S congruency rule]
ii) To show: ar.(BYXD)=2ar.(MBC)
ar.(ABD)=1/2ar.(BYXD) [Both on the same base BD and between same || lines BD and AX]
ar.(MBC)=1/2ar.(BYXD) [in (i) ∆MBC≅∆ABD ∴ar.(MBC)=ar.(ABD) ]
2ar.(ABC)=ar.( BYXD)
ar.(MBC)=1/2ar.(ABMN)[ ∆MBC and ||gm ABMN both lie on the same base MB and between same || lines MB and NC.]
2ar.(MBC)=ar.(ABMN) ————–1
Also,
2ar.(MBC)=ar.(BYXD) [from ii] —————2
From 1 and 2
ar.(BYXD)-ar.(ABMN)
(iv) To show: ∆FCB≅∆ACE
In ∆FCB and ∆ACE
FC=AC [sides of square ACFG]
BC=CE [sides of square BCED]
∠FCB=∠ACE [∠ACE=∠BCE=90°
∠ACF+∠ACB=∠BCE+∠ACB
∴∠FCB=∠ACE]
∴∆FCB≅∆ACE [by S.A.S congruence ]
(v) To show : ar.(YXE)=2ar.(FCB)
ar.(ACE)=1/2ar.(CYXE) [∆ ACE and ||gm CYXE both lie on the same base CE and between same|| lines CE and AX]
ar. (FCB)=1/2(CYXE) [in (iv) ∆FCB≅∆ACE ∴ar.(FCB=ar.(ACE)]
2ar.(FCB)=ar.(CYXE)
(vi) To show : ar.(CYXE)=ar.(ACFG)[∆FCB and ||gm ACEFG both lie on the same base CF and BG Between CF and BG]
2 ar.(FCB)=ar.(ACFG) ———1
2ar.(FCB)=ar.(CYXE)
From 1 and 2
ar.(CYXE)=ar.(ACFG)
ar.(ABMN)+ar.(ACEFG)
ar.(BYXD)=ar.(ABMN) [form (iii)] ———1
ar.(CYXE)=ar.(ACFG) [From (iv)] ———–2
Adding 1 and 2
ar.(BYXD)+ar. (CYXE)=ar.(ABMN)+ar.(ACEFG)
(vii) ar.(ABMN)+ar.(ACEFG)
ar.(BYXD)=ar.(ABMN) [form (iii)] ———1
ar.(CYXE)=ar.(ACFG) [From (iv)] ———–2
adding 1 and 2
ar.(BYXD)+ar(CYXE)=ar.(ABMN)+ar.(ACEFG)
ar.(BCED)=ar.(ABMN)+ar.(ACFG)