Python| Scipy 集成.romberg() 方法
借助scipy.integrate.romberg()
方法,我们可以通过 scipy.integrate.romberg() 方法得到一个可调用函数从限制 a 到 b 的scipy.integrate.romberg()
。
Syntax : scipy.integrate.romberg(func, a, b)
Return : Return the romberg integrated value of a callable function.
示例 #1:
在这个例子中我们可以看到,通过使用scipy.integrate.romberg()
方法,我们可以通过使用 scipy.integrate.romberg() 方法得到一个可调用函数从限制 a 到 b 的scipy.integrate.romberg()
。
# import numpy and scipy.integrate
import numpy as np
from scipy import integrate
gfg = lambda x: np.exp(-x**2)
# using scipy.integrate.romberg()
geek = integrate.romberg(gfg, 0, 3, show = True)
print(geek)
输出 :
示例 #2:
Romberg integration of from [0, 3]
Steps StepSize Results
1 3.000000 1.500185
2 1.500000 0.908191 0.710860
4 0.750000 0.886180 0.878843 0.890042
8 0.375000 0.886199 0.886206 0.886696 0.886643
16 0.187500 0.886205 0.886207 0.886207 0.886200 0.886198
32 0.093750 0.886207 0.886207 0.886207 0.886207 0.886207 0.886207
64 0.046875 0.886207 0.886207 0.886207 0.886207 0.886207 0.886207 0.886207
128 0.023438 0.886207 0.886207 0.886207 0.886207 0.886207 0.886207 0.886207 0.886207
The final result is 0.8862073482595311 after 129 function evaluations.
输出 :
Romberg integration of from [1, 2]
Steps StepSize Results
1 1.000000 0.757287
2 0.500000 0.713438 0.698822
4 0.250000 0.702909 0.699400 0.699438
8 0.125000 0.700310 0.699444 0.699447 0.699447
16 0.062500 0.699663 0.699447 0.699447 0.699447 0.699447
32 0.031250 0.699501 0.699447 0.699447 0.699447 0.699447 0.699447
The final result is 0.6994468414978009 after 33 function evaluations.