📜  所有对最短路径的约翰逊算法的实现(1)

📅  最后修改于: 2023-12-03 15:25:44.503000             🧑  作者: Mango

介绍

最短路径算法是图论中最基本的问题,约翰逊算法是其中的一种经典算法。本文将介绍最短路径问题和约翰逊算法的理论和实现。

最短路径

最短路径指的是从某一起点到某一终点的路径中,边的权值和最小的路径。最短路径问题可以转化为单源最短路径问题和全源最短路径问题。单源最短路径问题指的是从一个节点出发到其他所有节点的最短路径问题;全源最短路径问题指的是在一个图中,任意两点之间路径的最小值。

约翰逊算法

约翰逊算法是一种用于解决全源最短路径问题的算法。约翰逊算法的基本思想是通过在原图的基础上添加虚拟节点,将所有边的权值变为正数后,使用贝尔曼-福德算法求出虚拟节点到其它节点的最短距离,再利用这些距离计算出原图中所有节点之间的最短距离。虚拟节点可以看作是一个起点,通过贝尔曼-福德算法将这个虚拟节点和其它节点之间的路径加入最短路径图中。

约翰逊算法实现

以下是基于Python的约翰逊算法实现:

import heapq
from collections import defaultdict


class Graph:
    def __init__(self, n):
        self.adj = defaultdict(dict)
        self.nodes = set(range(1, n+1))

    def add_edge(self, u, v, w):
        self.adj[u][v] = w

    def shortest_path(self):
        self.add_virtual_node()
        dist = {vertex: float('inf') for vertex in self.nodes}
        dist[self.virtual_node] = 0
        self.bellman_ford(dist)
        graph = self.reweight_edges()

        shortest_paths = {}
        for vertex in self.nodes:
            shortest_paths[vertex] = {}
            dijkstra_dist = self.dijkstra(graph, vertex)
            for dest, dist in dijkstra_dist.items():
                if dist == float('inf'):
                    continue
                shortest_paths[vertex][dest] = dist - \
                    graph.dist[graph.virtual_node] + graph.dist[vertex] - graph.dist[dest]
        return shortest_paths

    def add_virtual_node(self):
        self.virtual_node = max(self.nodes) + 1
        self.adj[self.virtual_node] = {}
        for node in self.nodes:
            self.adj[self.virtual_node][node] = 0

    def bellman_ford(self, dist):
        for _ in range(len(self.nodes) - 1):
            for u, edges in self.adj.items():
                for v, w in edges.items():
                    if dist[v] > dist[u] + w:
                        dist[v] = dist[u] + w
        self.dist = dist

    def reweight_edges(self):
        graph = Graph(len(self.nodes))
        for u, edges in self.adj.items():
            for v, w in edges.items():
                graph.add_edge(u, v, w + self.dist[u] - self.dist[v])
        return graph

    def dijkstra(self, graph, source):
        dist = {node: float('inf') for node in self.nodes}
        dist[source] = 0
        heap = [(0, source)]
        while heap:
            (cost, node) = heapq.heappop(heap)
            if cost > dist[node]:
                continue
            for neighbor, neighbor_cost in graph.adj[node].items():
                if neighbor_cost == float('inf'):
                    continue
                new_cost = dist[node] + neighbor_cost
                if new_cost < dist[neighbor]:
                    dist[neighbor] = new_cost
                    heapq.heappush(heap, (new_cost, neighbor))
        return dist


g = Graph(5)
g.add_edge(1, 2, 1)
g.add_edge(2, 3, 2)
g.add_edge(3, 4, 3)
g.add_edge(4, 1, 4)
g.add_edge(1, 3, 3)
g.add_edge(4, 5, 5)
print(g.shortest_path())

代码使用了贝尔曼-福德算法和 Dijkstra 算法,并演示了基于 Python 的约翰逊算法的使用。