📜  R-泊松回归

📅  最后修改于: 2020-11-29 07:54:55             🧑  作者: Mango


泊松回归涉及回归模型,其中响应变量采用计数形式,而不是分数形式。例如,足球比赛系列中的出生数或获胜数。响应变量的值也遵循泊松分布。

泊松回归的一般数学方程为-

log(y) = a + b1x1 + b2x2 + bnxn.....

以下是所用参数的描述-

  • y是响应变量。

  • ab是数字系数。

  • x是预测变量。

用于创建泊松回归模型中的函数是GLM()函数。

句法

泊松回归中glm()函数的基本语法为-

glm(formula,data,family)

以下是上述功能中使用的参数的说明-

  • 公式是表示变量之间关系的符号。

  • data是给出这些变量值的数据集。

  • family是R对象,用于指定模型的详细信息。 Logistic回归的值是“泊松”。

我们有内置的数据集“经纱断裂”,它描述了羊毛类型(A或B)和张力(低,中或高)对每个织机经纱断裂次数的影响。让我们将“中断”视为响应变量,它是中断次数的计数。羊毛的“类型”和“张力”被用作预测变量。

输入数据

input 

当我们执行以上代码时,它产生以下结果-

breaks   wool  tension
1     26       A     L
2     30       A     L
3     54       A     L
4     25       A     L
5     70       A     L
6     52       A     L

创建回归模型

output 

当我们执行以上代码时,它产生以下结果-

Call:
glm(formula = breaks ~ wool + tension, family = poisson, data = warpbreaks)

Deviance Residuals: 
    Min       1Q     Median       3Q      Max  
  -3.6871  -1.6503  -0.4269     1.1902   4.2616  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.69196    0.04541  81.302  < 2e-16 ***
woolB       -0.20599    0.05157  -3.994 6.49e-05 ***
tensionM    -0.32132    0.06027  -5.332 9.73e-08 ***
tensionH    -0.51849    0.06396  -8.107 5.21e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 297.37  on 53  degrees of freedom
Residual deviance: 210.39  on 50  degrees of freedom
AIC: 493.06

Number of Fisher Scoring iterations: 4

在摘要中,我们认为最后一列的p值小于0.05,以考虑预测变量对响应变量的影响。可以看出,具有张力类型M和H的羊毛类型B对断头次数有影响。