为代数表达式定义了代数恒等式。代数表达式包含变量(a,b,c,x,y,z等),数字(0、1、2、3、4等)和运算符(+,-,*,/….etc)。代数表达式可以仅包含常量(1、2、3、4等),也可以仅包含变量(x,y,z等),也可以同时包含常量和变量(5xy,4p 3 )。代数恒等从本质上讲就是那些数学方程式,可以简化现实生活中的计算。
例如:考虑将两个数字相乘,例如“ 989”和“ 1011”。现在,这是一个很长的计算,但是如果您知道一些适合此类问题的身份,就可以轻松解决。在详细介绍代数恒等式之前,首先让我们看一下恒等式:
什么是身份?
同一性是两个或两个以上数学表达式之间的关系,以便它们对所有变量值产生相同的值。用简单的话说,对于变量的所有值,一个方程式的LHS变得与RHS完全相等,就说明了一个恒等式。
让我们看下面的表达式
(x + 2)(x + 4)= x 2 + 6x + 8
针对x的不同值,评估此方程式的双方RHS和LHS,
1. x = 5
LHS: (x + 2)(x + 4) = (5 + 2)(5 + 4) = 63
RHS: x2 + 6x + 8 = 52 + 6(5) + 8 = 25 + 30 + 8 = 63
Thus, both sides of this expression are equal for x = 5.
2. x = 10
LHS: (x + 2) (x + 4) = (10 + 2) (10 + 4) = (12)(14) = 168
RHS: x2 + 6x + 8 = 102 + 6(10) + 8 = 100 + 60 + 8 = 168
Thus, both sides of this expression are equal for x = 10.
如果我们继续尝试使用不同的x值,我们将发现LHS和RHS对于x的每个值都是相等的。这样的表达式对于其中存在的变量的每个值都是正确的,称为“身份”。
Note: An equation is only true for some values of variables present in it.
For example:
a2 + 3a + 2 = 132
a = 10 satisfies this identity, but a = 5 or – 7 cannot.
代数表达式的类型
表达式可以具有不同的类型,具体取决于它们包含多少个术语。构成身份的表达式有四种不同。
单项式
仅包含一项的表达式称为单项表达式。
例如:16Z 2,8xy,-7M,11 …。等等。
Note: A Monomial Expression can be only a constant, a variable or a combination of both constants and Variables.
For Example: 4, x3, 15x2
二项式
仅包含两个项的表达式称为二项式表达式。
例如: x + y,2x + 5z,x 2 + 10 ..等
二项式身份证明:
Identity 1: (a + b)2 = a2 + 2ab + b2
Proof: L.H.S. = (a + b)2
L.H.S. = (a + b) (a + b)
By multiplying each term, we get,
L.H.S = a2 + ab + ab + b2
L.H.S. = a2 + 2ab + b2
L.H.S. = R.H.S.
Identity 2: (a – b)2 = a2 – 2ab + b2
Proof: By taking L.H.S.,
(a – b)2 = (a – b) (a – b)
(a – b)2 = a2 – ab – ab + b2
(a – b)2 = a2 – 2ab + b2
L.H.S. = R.H.S.
Hence, proved.
Identity 3: a2 – b2 = (a + b) (a – b)
Proof: By taking R.H.S and multiplying each term.
(a + b) (a – b) = a2 – ab + ab – b2
(a + b) (a – b) = a2 – b2
Or
a2 – b2 = (a + b) (a – b)
L.H.S. = R.H.S.
Hence proved.
三项式
仅包含三个项的表达式称为三项式表达式。
例如: 2a + 3b – 5,a 2 b – ab 2 + b 2
Trinomial Identity |
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca |
a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca) |
Identity: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
Proof: Taking L.H.S.
(a+b+c)2= (a+b+c) × (a+b+c)
Using Distributive Property:
(a+b+c)2= a (a+b+c) +b (a+b+c) +c (a+b+c)
= a2+ab+ac+ab+b2+bc+ca+cb+c2
Rearranging the following:
(a+b+c)2= a2+b2+c2+2ab+2bc+2ca
Hence, L.H.S. = R.H.S.
多项式
它是所有三种和其他类型表达的概括。包含一个或多个系数为非零的项(变量具有非负指数)的表达式称为多项式。多项式可以包含任意数量的项,一个或多个。
例如:X + Y,2A + 3B – 5,16Z 2,图2a + 3b中- 5 + Z。
现在,我们准备研究代数恒等式。
代数恒等式
了解基本代数恒等式(也称为标准恒等式)非常重要。
Standard Identities |
(a + b)2 = a2 + 2ab + b2 |
(a – b)2 = a2 – 2ab + b2 |
a2 – b2 = (a + b)(a – b) |
其他身份:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca |
a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca) |
(a + b)3 = a3 + b3 + 3ab(a + b) |
(a – b)3 = a3 – b3 – 3ab (a – b) |
(x + a) (x + b) = x2 + (a + b)x + ab |
让我们看一些使用这些身份的示例。
样本问题
问题1:使用上述身份找出(4x + 3y) 2 。
解决方案:
This can be found out using the identity of (a + b)2 = a2 + b2 + 2ab.
(4x + 3y)2 = (4x)2 + (3y)2 + 2(4x)(3y)
= 16x2 + 9y2 + 24xy
问题2:找到值99 2 。
解决方案:
Multiplying 99 with 99 will take time and calculation. We can formulate this problem in a form that is easier to calculate.
We have seen the identity, (a – b)2 = a2 + b2 – 2ab.
So, 992 = (100 – 1)2 = 1002 + 12 – 2(100)(1)
= 10000 + 1 -200
= 9801
问题3:找出983 2 – 17 2
解决方案:
This can take a lot of calculation if we do it the traditional way. We should use the identities to solve this.
We can use a2 – b2 = (a + b)(a -b)
So, 9832 – 172 = (983 + 17)(983 – 17)
= (1000)(966)
= 966000
问题4:找出答案
解决方案:
We can use a2 – b2 = (a + b)(a -b)
问题5:找出1011 2 。
解决方案:
This problem can be solved using multiple identities. Let’s solve it using the identity with three variables.
(a + b + c ) 2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
10112 = (1000 + 10 + 1)2 = 10002 + 102 + 12 + 2(1000)(10) + 2(10)(1) + 2(1000)
= 1000000 + 100 + 1 + 20000 + 20 + 2000
= 1022121